Waste Tank Summary Report for Month Ending July 31, 1998 Prepared for the U.S. Department of Energy Office of Environmental Restoration and Waste Management FLUOR BANKEL HANFORD, INC. SRichland, Washington Hanford Management and integration Contractor for the U.S. Department of Energy under Contract DE-AC06-96RL13200 Approved for Public Release; Further Dissemination Unlimited #### LEGAL DISCLAIMER. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced from the best available copy. Printed in the United States of America DISCLM-2.CHP (1-91) ### Waste Tank Summary Report for Month Ending July 31, 1998 B. M. Hanlon Lockheed Martin Hanford Corp. Date Published September 1998 Prepared for the U.S. Department of Energy Office of Environmental Restoration and Waste Management PLUOR DANIEL HANFORD, INC. P.O. Box 1000 Richland, Washington Hanford Management and Integration Contractor for the U.S. Department of Energy under Contract DE-AC06-96RL13200 Approved for Public Release; Further Dissemination Unlimited #### **RELEASE AUTHORIZATION** **Document Number:** HNF-EP-0182-124 Document Title: Waste Tank Summary Report for Month Ending July 31, 1998 This document, reviewed in accordance with DOE Order 1430.1D, "Scientific and Technical Information Management," and DOE G 1430.1D-1, "Guide to the Management of Scientific and Technical Information," does not contain classified or sensitive unclassified information and is: APPROVED FOR PUBLIC RELEASE V. I. Birkland Lockheed Martin Services, Inc. Document Control/Information Clearance Reviewed for Applied Technology, Business Sensitive, Classified, Copyrighted, Export Controlled, Patent, Personal/Private, Proprietary, Protected CRADA, Trademark, Unclassified Controlled Nuclear Information. LEGAL DISCLAIMER. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, not any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced from the best available copy. Printed in the United States of America. • { #### **APPROVALS** Prepared by: B M Hanlon Ďate Responsible Manager: M. A. Payne, Director Date TWRS Technical Operations & Engineering This page intentionally left blank. #### WASTE TANK SUMMARY REPORT B. M. Hanlon • (#### **ABSTRACT** This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 63 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U. S. Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, U. S. Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks. This page intentionally left blank. **-** i ### **CONTENTS** | | Page | |---|-------------| | UMMARY | | | WASTE TANK STATUS | | | . WASTE TANK INVESTIGATIONS | | | I. SURVEILLANCE AND WASTE TANK STATUS HIGHLIGHTS | 2 | | ppendixes: | | | WASTE TANK SURVEILLANCE MONITORING TABLES | A-1 | | Tables: | | | 1 Watch List Tanks A-2 | | | 2 Additions/Deletions to Watch List Tanks by Year A-3 | | | 3 Temperature Monitoring in Watch List Tanks | | | 4 Temperature Monitoring in Non-Watch List Tanks | | | 6 Double-Shell Tanks Monitoring Compliance Status | | | 7 ENRAF Surface Level Gauge Installation and Data Input Methods | | | 8 Tank Monitor and Control System (TMACS) Monitoring Status A-16 | | | DOUBLE-SHELL TANK WASTE TYPE AND SPACE ALLOCATION . | B-1 | | Tables: | | | 1 Double-Shell Tank Waste Type and Space Allocation B-2 2 Double-Shell Tank Waste Inventory B-3 | | | Figures: | | | 1 Total Double-Shell Tank Total Inventory B-5 | | | TANK AND EQUIPMENT CODE AND STATUS DEFINITIONS | C 1 | | 1 Tank and Equipment Code/Status Definitions | | | rank and Equipment Conditions Delinations | | | TANK FARM CONFIGURATION, STATUS AND FACILITY CHARTS | D- 1 | | Figures: 1 High-Level Waste Tank Configuration | | | 2 Double-Shell Tank Instrumentation Configuration D-3 | | | 3 Single-Shell Tank Instrumentation Configuration D-4 | | | | | | MONTHLY SUMMARY | E-1 | | 1 Monthly Summary | | | 3 Pumping Record, and Liquid Status and Pumpable Liquid Remaining | | | In Tanks E-4 | | | 4 Inventory Summary by Tank Farm E-5 | | | 5 Inventory and Status by Tank - Double-Shell Tanks E-6 | | | 6 Inventory and Status by Tank - Single-Shell Tanks E-8 | | | PERFORMANCE SUMMARY | F-1 | | Table: | | | 1 Performance Summary F-2 | | | 2 Summary of Waste Transactions in the Double-Shell Tanks F-4 3 Comparison of Projected Versus Actual Waste Volumes for | | | Hanford Facilities F-5 | | | | | | G. | MISCELLANEOUS UNDERGROUND STORAGE TANKS AND SPECIAL SURVEILLANCE | |----|---| | | FACILITIES G-1 | | | Tables: | | | 1 Misc. Underground Storage Tanks and Special Surveillance Facilities (Active). G-2 | | | 2 East Area Inactive Underground Storage Tanks and Special Surveillance | | | Facilities (Inactive) G-3 | | | 3 West Area Inactive Underground Storage Tanks and Special Surveillance | | | Facilities (Inactive) G-4 | | H. | LEAK VOLUME ESTIMATES H-1 | | | Table: | | | 1 Single-Shell Tank Leak Volume Estimates H-2 | | I. | SINGLE-SHELL TANKS INTERIM STABILIZATION, AND CONTROLLED, CLEAN | | | AND STABLE STATUS | | | Tables: | | | l Single-Shell Tanks Interim Stabilization Status I-2 | | | 2 Tri-Party Agreement Single-Shell Tank Interim Stabilization | | | Schedule | | | 3 Single-Shell Tanks Stabilization Status Summary I-6 | | J. | CHARACTERIZATION PROGRESS STATUS J-1 | | ٠. | Figure: | | | 1 Characterization Progress Status | | | • Vane whom and work a very too to the deal | | M | ETRIC CONV | ERSION CHART | | | | | | | | | | |----------------------------|------------|------------------|---|--|--|--|--|--|--|--|--| | 1 inch = 2.54 centimeters | | | | | | | | | | | | | 1 foot = 30.48 centimeters | | | | | | | | | | | | | l gallon = 3.80 liters | | | | | | | | | | | | | 1 ton | = | 0.90 metric tons | | | | | | | | | | | | °F = (9/5 | °C) + 32 | $^{\circ}F = \left(\frac{9}{5} ^{\circ}C\right) + 32$ | #### WASTE TANK SUMMARY REPORT FOR MONTH ENDING JULY 31, 1998 Note: Changes from the previous month are in bold print. #### I. WASTE TANK STATUS | Category | Quantity | Date of Last Change | |---|------------------------------------|---------------------------| | Double-Shell Tanks ^c | 28 double-shell | 10/86 | | Single-Shell Tanks | 149 single-shell | 07/88 | | Assumed Leaker Tanks ^t | 67 single-shell | 7/93 | | Sound Tanks | 28 double-shell
82 single-shell | 1986
7/93 | | Interim Stabilized Tanks ^{b,d} | 119 single-shell | 11/97 | | Not Interim Stabilized ^f | 30 single-shell | 11/97 | | Intrusion Prevention Completed* | 108 single-shell | 09/96 | | Controlled, Clean, and Stable | 36 single-shell | 09/96 | | Watch List Tanks * | 32 single-shell
6 double-shell | 9/96 ^h
6/93 | | Total | 38 tanks | | ^{*} All 149 single-shell tanks were removed from service (i.e., no longer authorized to receive waste) as of November 21, 1980. ^b Of the 119 tanks classified as Interim Stabilized, 64 are listed as Assumed Leakers. The total of 119 Interim Stabilized tanks includes one tank that does not meet current established supernatant and interstitial liquid stabilization criteria. (See Table I-1 footnotes, item #2) ^e Six double-shell tanks are currently included on the Hydrogen Watch List and are thus prohibited
from receiving waste in accordance with "Safety Measures for Waste Tanks at Hanford Nuclear Reservation," Section 3137 of the *National Defense Authorization Act for Fiscal Year 1991*, November 5, 1990, Public Law 101-510. ⁴ Of the 32 single-shell tanks on Watch Lists, 11 have been Interim Stabilized. ^{*} Of the 32 single-shell tanks on Watch Lists, 11 have completed Intrusion Prevention (this category replaced Interim Isolation). (See Appendix C for "Intrusion Prevention" definition). ¹ Three of these tanks are Assumed Leakers (BY-105, BY-106, SX-104). (See Table H-1) ^{*} See Section A tables for more information on Watch List Tanks. Eight tanks (A-101, S-102, S-111, SX-103, SX-106, U-103, U-105, and U-107) are currently on more than one Watch List. ^h Dates for the Watch List tanks are "officially added to or removed from the Watch List" dates. (See Table A-1, Watch List Tanks, for further information.) ¹ The TY tank farm was officially declared Controlled, Clean, and Stable in March 1996. The TX tank farm and BX tank farms were declared CCS in September 1996. (BX-103 has been declared to have met current interim stabilization criteria, and is included in CCS - see also Appendix I). #### II. WASTE TANK INVESTIGATIONS This section includes all single-shell tanks or catch tanks which are showing <u>surface level or interstitial liquid level (ILL)</u> decreases, or drywell radiation level increases in excess of established criteria. There are currently no tanks under investigation for ILL decreases or drywell radiation level increases which exceed the criteria. Drywell monitoring is done on an "as needed basis" with the exception of tanks C-105 and C-106 which are monitored monthly. ### A. Assumed Leakers or Assumed Re-leakers: (See Appendix C for definition of "Re-leaker") This section includes all single- or double-shell tanks or catch tanks for which an <u>off-normal or unusual occurrence</u> report has been issued, or for which a waste tank investigation is in progress, for assumed leaks or re-leaks. Tanks/catch tanks will remain on this list until either a) completion of Interim Stabilization, b) the updated occurrence report indicates that the tank/catch tank is not an assumed leaker, or c) the investigation is completed. There are currently no tanks for which an off-normal or unusual occurrence report has been issued for assumed leaks or re-leaks. #### B. Tanks with increases indicating possible intrusions: This section includes all single-shell tanks and related receiver tanks for which the surveillance data show that the surface level or ILL has met or exceeded the increase criteria, or are still being investigated. <u>Candidate Intrusion List:</u> Increase criteria in the following tanks indicate possible intrusions; however, no funds were allocated for performing intrusion investigations in FY 1998, due to higher priority work in the area of safe storage. Tank 241-B-202 Tank 241-BX-101 Tank 241-BX-103 Tank 241-BY-103 Tank 241-C-101 244-AR Tanks and Sumps: Currently, all ventilation systems at 244-AR are shut down. Based on the weight factor gauges for the sumps and tanks, Tank 001 contains 1.300 gallons, Tank 002 contains 12,250 gallons, Tank 003 contains 2,000 gallons, and Tank 004 contains 250 gallons. Sump 001 contains 15.5 gallons, Sump 002 contains 0-2 gallons, and Sump 003 contains 3,300 gallons. No change in tank contents. These volumes were updated June 30, 1998. Status of jet pumping: first attempts at jetting were unsuccessful. The next attempt to jet pump will be next fiscal year, or later, depending on funding. CR-003-Catch Tank: Tank level has decreased approximately 500 gallons from October 1994 through November 1997. Even though there is no OSD criteria for leak detection, an investigation began November 14, 1997. A preliminary evaporative analysis suggests that evaporation is a viable means for the decrease. In January and February 1998, this catch tank received intrusions totaling approximately 450 gallons. A video was taken inside the vault on February 5, 1998. Until further investigation, it was determined that the water was from rain intrusion and a preliminary evaporative analysis suggests that evaporation is a viable means for the decrease. Starting in March 1998, the level has decreased at the rate of approximately 24 gallons per month. #### III. SURVEILLANCE AND WASTE TANK STATUS HIGHLIGHTS ### 1. Single-Shell Tanks Saltwell Jet Pumping (See Table E-6 footnotes for further information) Tank 241-SX-104 - The saltwell pump was started September 26, 1997; 200 gallons were pumped in September before the transfer line between SX-104 and 244-S became plugged. The transfer line between SX-104 and 244-S was unplugged in December 1997. The pits have been reconfigured and the transfer route re-established. The flush line for the pump recirculation loop was reconfigured and placed inside the pit, to meet new Basis for Interim Operation (BIO) requirements. An in-tank video was taken February 4, 1998. Pumping resumed on March 20, following the installation of a dilution system designed to dilute the waste in the saltwell in order to make it easier to pump. Pumping was interrupted and then resumed on March 23, and again interrupted. An analysis showed that when the liquid is pumped from the tank into the buried transfer line, it is cooled by the surrounding soil. The sodium phosphate salts within the waste then solidify and eventually plug the line. Pumping resumed on July 23 with the dilution system operating to provide 100% dilution of the waste being transferred to prevent plugging. Pumping continued until July 26 when the system was shut down to pump 244-S to SY-102. Pumping resumed July 29; 3.3 Kgallons were pumped in July. A total of 117.3 Kgallons has been pumped from this tank. #### Tank 241-SX-106 - The saltwell screen was installed. Tank 241-T-104 - Pumping started March 24, 1996. The pump failed in August and was replaced; pumping resumed in September and 5.2 Kgallons were pumped in October. Pumping was suspended October 18 for flammable gas issues, and resumed January 4, 1997. 1.6 Kgallons were pumped in January; no pumping was done in February and March, pending completion of the transfer line pressure test. Pumping resumed April 17, 1997. Pumping shut down due to USQ issues related to a Potential Inadequacy in the Authorization Basis (PIAB) concerning the clean out box volume. DOE approval of Justification for Continued Operation (JCO) for this PIAB was received March 31. Pumping resumed on June 6, 1998; 4.2 Kgallons were pumped in July. Actual volume of liquid remaining to be pumped is still a rough estimate. Volumes will be corrected as porosity data becomes available with continued pumping: 1360 gallons of raw water were used during July for pumping operations. A total of 127.4 Kgallons has been pumped from this tank. Tank 241-T-110 - Pump replacement was completed; pumping resumed, and 5.9 Kgalions were pumped in July 1998. Actual volume of liquid remaining to be pumped is still a rough estimate. Volumes will be corrected as porosity data becomes available with continued pumping; 2637 galions of raw water were used during July for pumping operations. A total of 20.3 Kgalions has been pumped from this tank. #### 2. Single-Shell Tank TPA Interim Stabilization Milestones All M-41-xx Milestones are being renegotiated. See also Table I-2, Tri-Party Agreement Single-Shell Tank Interim Stabilization Schedule. #### 3. Tank Waste Remediation System Safety Initiatives The U. S. Secretary of Energy has directed that six safety initiatives be implemented in the Tank Waste Remediation System Program to accelerate the mitigation/resolution of the high priority waste tank safety issues at the Hanford Site. Forty-two milestones were established for accomplishing the initiatives. #### No Safety Initiatives were scheduled to be completed in July. The following Safety Initiatives remain to be completed: SI 21 - Close SY Farm Flammable Gas Unreviewed Safety Questions (USQ) SI 4a - Upgrade Alarm Panels in Seven Tank Farms SI 4c - Complete Accelerated Walk-Downs and Field Verify Essential Drawings SI 6d - Initiative C-106 Accelerated Retrieval Completion dates for Safety Initiatives 21, 4c and 4d have been missed. SI 4a - An assessment of the Completion Record is being evaluated for this Safety Initiative. #### 4. Double-Shell Tank 241-SY-101 Waste Level Increase Although the waste level in tank SY-101 has risen slowing and steadily since last February, the surface level and hydrogen venting are within safety and operating limits. A mixer pump was installed in the tank in July 1993, which circulates liquid wastes from the tank's upper layer down to the bottom where jet nozzles discharge the fluid about two feet from the bottom. This prevents gas bubbles from building up at the bottom, and results in venting of small steady gas releases, rather than in large infrequent gas releases. Investigations continue on why the surface level is rising. The tank is venting the same volumes of hydrogen now as before the surface began rising, which indicates massive amounts of gas are not collecting within the tank. Resolution Status: On February 11, 1998, the PRC recommended that the DOE-RL declare an Unreviewed Safety Question (USQ) over the continued level growth observed in this tank. The PRC implemented a standing order (SO) that placed operational restrictions on mixer pump operations. The SO released Operations from required actions at waste levels of 402 and 406 inches as measured by the Riser IC ENRAF. Additional activities are upcoming in support of the waste level growth in SY-101. The increase was at 402% of the criteria limit in July (the increase of 12 inches exceeds the 3-inch criteria limit by 4 times). This tank will be rebaselined in August. Void Fraction Instrument (VFI) work is currently being done with sampling and video being taken. (See also Unusual Occurrence Report
RL-PHMC-TANKFARM-1997-0106 below). #### 5. Characterization Progress Status (See Appendix J) Characterization is understanding the Hanford tank waste chemical, physical, and radiological properties to the extent necessary to ensure safe storage and interim operation, and ultimate disposition of the waste. #### Characterization Progress for July: The number of tanks sampled via the Data Quality Objective Process has risen this month to 164. Tank 241-T-112 has been classified as "complete" with the review and publication of a tank characterization report; that raises the number classified as "complete" to 42. This characterization report is available from the Tank Characterization Safety and Resource Center. Editing of sampling results has changed the status of several tanks, including 241-C-202, 241-BY-101, 241-S-110, and 241-U-101. In most cases, the status indicates whether or not a determination has been made that more sample material is needed, even though some samples have been successfully removed from the tank. 6. TANKFARM-1997-0106. Unusual Occurrence Report. "Potential Inadequacy in the Authorization Basis for Tank 241-SY-101." dated February 13, 1998. (This report was originally issued as "Off-Normal" on December 30, 1997, and upgraded to "Unusual" on February 13, 1998) On December 29, 1997, an Unreviewed Safety Question (USQ) screening on a potential inadequacy in the Authorization Basis for tank SY-101 was presented to the TWRS Plant Review Committee (PRC). During 1997, the tank waste surface level in SY-101 began to increase in a manner which is not consistent with its previous behavior. Other waste parameters continue to remain consistent with the historical trends. The PRC concurred with the conclusion of the USQ screening and declared that a discovery exists in relation to the current waste level behavior in the tank. No limitations to plant operations were imposed as a result of this discovery. In 1993, a mixer pump was installed in this tank. The pump was installed in the waste to mix the tank contents. This causes the gasses to be released continuously and prevents episodic gas releases. When the mixer pump was installed, the waste surface level in the tank was 406 inches. After a few months of pump operation, the waste level had decreased to below 400 inches. This level remained stable with no significant trends for the past four years. The surface level in SY-101 has historically been used as an indirect measure of gas retained in the tank waste. Increased retention of gas bubbles causes the waste level to rise, while the release of gas causes the level to drop. The surface level in SY-101 has risen from 397.5 inches to 400.5 inches in 1997. The mixer pump long-term operation plan controls state that aggressive operations should be considered by the Test Review Group (TRG) when the surface level reaches 399.5 inches. On October 27, 1997, the number of pump runs was increased from three per week to four per week. This increase in the number of pump runs did not slow the surface level growth as suggested by the long-term operation plan. The increased operation of the mixer pump may have accelerated the rate of level growth of the tank waste. On December 9, 1997, the TRG determined that pump operations would return to three pump runs per week. On February 11, 1998, the Plant Review Committee agreed to recommend to the DOE-RL that an Unreviewed Safety Question (USQ) existed with regard to the recent level growth in 241-SY-101. The Safety Assessment for Mixer Pump Operations assumes no level growth during normal pump operations. However, the level has increased steadily over the year, prompting a USQ determination which ultimately resulted in the recommendation to DOE-RL on February 12. As a result, this occurrence was upgraded to an Unusual Occurrence. A standing order was issued which implemented compensatory measures for operating the SY-101 Mixer Pump. To ensure the appropriate amount of attention is given to Tank SY-101 level issues, the PRC directed that operations and maintenance be performed in accordance with the existing Authorization Basis, with restrictions on mixer pump operations. These restrictions have been included in Standing Order 98-15. This page intentionally left blank. ### APPENDIX A WASTE TANK SURVEILLANCE MONITORING TABLES #### TABLE A-1. WATCH LIST TANKS July 31, 1998 These tanks have been identified as Watch List Tanks in accordance with Public Law 101-510, Section 3137, "Safety Measures for Waste Tanks at Hanford Nuclear Reservation," (1990). These tanks have been identified because they "... may have a serious potential for release of high-level waste due to uncontrolled increases in temperature or pressure." | Single-Shell Tanks | | Officially
Added to | Double-Shell Tanks | | Officially
Added to | |--------------------|------------------|------------------------|---------------------|-----------------|------------------------| | Tank No. | Watch List | Watch List | Tank No. | Watch List | Watch List | | | | | | | | | A-101 (*) | Hydrogen | 1/91 | AN-103 | Hydrogen | 1/91 | | | Organics | 5/94 | AN-104 | Hydrogen | 1/91 | | AX-101 | Hydrogen | 1/91 | AN-105 | Hydrogen | 1/91 | | AX-102 | Organics | 5/94 | AW-101 | Hydrogen | 6/93 | | AX-103 | Hydrogen | 1/91 | SY-101 | Hydrogen | 1/91 | | B-103 | Organics | 1/91 | SY-103 | Hydrogen | 1/91 | | C-102 | Organics | 5/94 | 6 Tanks | | | | C-103 | Organics | 1/91 | | | | | C-106 | High Heat Load | 1/91 | TANKS BY WATCH | LIST | | | S-102 (*) | Hydrogen, | 1/91 | | | | | | Organics | 1/91 | <u>Hydrogen</u> | <u>Organics</u> | | | S-111 (*) | Hydrogen | 1/91 | A-101 | A-101 | | | | Organics | 5/94 | AX-101 | AX-102 | | | S-112 | Hydrogen | 1/91 | AX-103 | B-103 | | | SX-101 | Hydrogen | 1/91 | S-102 | C-102 | | | SX-102 | Hydrogen | 1/91 | S-111 | C-103 | | | SX-103 (*) | Hydrogen | 1/91 | S-112 | S-102 | | | | Organics | 5/94 | SX-101 | S-111 | | | SX-104 | Hydrogen | 1/91 | SX-102 | SX-103 | | | SX-105 | Hydrogen | 1/91 | SX-103 | SX-106 | | | SX-106 (*) | Hydrogen, | 1/91 | SX-104 | T-111 | | | . , , | Organics | 1/91 | SX-105 | TX-105 | | | SX-109 | Hydrogen because | | SX-106 | TX-118 | | | | other tanks vent | | SX-109 | TY-104 | | | | thru it | 1/91 | T-110 | U-103 | | | T-110 | Hydrogen | 1/91 | U-103 | U-105 | | | T-111 | Organics | 2/94 | U-105 | U-106 | | | TX-105 | Organics | 1/91 | — _{U-107} | U-107 | | | TX-118 | Organics | 1/91 | U-108 | U-111 | | | TY-104 | Organics | 5/94 | U-109 | U-203 | | | U-103 (*) | Hydrogen | 1/91 | AN-103 | U-204 | | | | Organics | 5/94 | AN-104 | 20 Tanks | | | U-105 (*) | Hydrogen | 1/91 | AN-105 | | 4 | | | Organics | 5/94 | AW-101 | | | | U-106 | Organics | 1/91 | SY-101 | High Heat | | | U-107 (*) | Organics | 1/91 | SY-103 | C-106 | | | | Hydrogen | 12/93 | 25 Tanks | 1 Tank | | | U-108 | Hydrogen | 1/91 | | | • | | U-109 | Hydrogen | 1/91 | | | | | U-111 | Organics | 8/93 | 32 Single | -Sheli tanks | | | U-203 | Organics | 5/94 | | e-Shell tanks | | | U-204 | Organics | 5/94 | | on Watch Lists | | | 32 Tenke (*) | · - # minex | | ⊣ | | | ^(*) Eight tanks are on more than one Watch List All tanks were removed from the Ferrocyanide Watch List; see Table A-2 for list and dates. TABLE A-2. ADDITIONS/DELETIONS TO WATCH LISTS BY YEAR July 31, 1998 Added/Deleted dates may differ from dates that tanks were officially added to the Watch Lists. (See Table A-1). | _ | | | | | | | | | tal Tanks (1) | | | |--|-------|----------------------|----------|--|----------------|-----------|-----------|-------------|---------------|--|--| | | Ferro | cyanide | Hydrogen | Org | anics | High Heat | | DST | | | | | 1/91 Original List -Response to Public Law 101-510 | 23 | | 23 | 8 | | 1 | | 5 | | | | | Added 2/91 (revision to Original List) | 1 | T-107 | | 00000 | | | 1 | 20603666946 | 2022202020 | | | | Total - December 31 (1991 | 24 | | 23 | 8 | | 1 | 43 | 5 | | | | | Added 8/92 | | | 1 AW-10 | 1 | | 1 | \$2000777 | 1 | 5 | | | | Total - December 31, 1992
Added 393 | 24 | | 24 | | U-111 | | 48 | | | | | | Deleted 7/93 | -4 | | | ' | Q-111 | | -∔ | | | | | | | | (BX-110) | | | | | | | | | | | | | (BX-111) | | | | | | | | | | | | | (BY-101) | | | | | | | | | | | Added 12/93 | | (T-101) | 1 (U-107 | n | | İ | ٥ | | | | | | Total - December 31, 1993 | 20 | | 25 | /
• • • • • • • • • • • • • • • • • • • | | | 45 | | 5 | | | | Added 2/94 | | | | 1 | T-111 | | 1 | | | | | | Added 5/94 | | | | 10 | A-101 | 1 | 4 | | | | | | | | | | | AX-102 | | | | | | | | | | | | | C-102
S-111 | | | | | | | | | | | | | SX-103 | | | | | | | | | | | | | TY-104 | ļ | | | | | | | | | | | | U-103 | | | | | | | | | | | | | U-105 | | | | | | | | | | | | | U-203
U-204 | | | | | | | | Deleted 11/94 | - | 2 (BX-102) | | | 0-20- | | -2 | | | | | | | | (BX-106) | | | | | | i | ! | | | | Total - December 31, 1994, & December 31, 1995 | 18 | | 25 | 20 | | 1 | 48 | 6 | 54 | | | | Deleted 6/96 | -4 | (C-108) | | | | | 4 | | | | | | | | (C-109)
(C-111) | | ł | | | | | | | | | | | (C-112) | | 1 | | | | | | | | | Deleted 9/96 | -14 | (BY-103) | | | | | -12 | | | | | | | | (BY-104) | | | | | | ĺ | | | | | | | (BY-105) | | - | | | | | | | | | | | (BY-106)
(BY-107) | | | | l i | | | | | | | | | (BY-107) | | | | | | | | | | | | | (BY-110) | | | | | | | | | | | | | (BY-111) | | | | | l | | | | | | j | | (BY-112) | | | |] | | 1 | | | | | 1 | | (T-107)
(TX-118) | | | | | | Ì | | | | | | | (TY-101) | | | | | | | | | | | | | (TY-103) | | | | | |] | | | | | | | (TY-104) | | | | | | i | | | | | Fotal - July 31, 1996 | 0 | | 25 | 20 | | 1 | 32 | 8 | 38 | | | ⁽¹⁾ Eight tanks are on more than one list: A-101, S-102, S-111, SX-103, SX-106, U-103, U-105, and U-107; therefore the total of tanks added or deleted will depend upon whether a tank is also on another list. # TABLE A-3. TEMPERATURE MONITORING IN WATCH LIST TANKS
(Sheet 1 of 2) July 31, 1998 All Watch List tanks are reviewed for increasing temperature trends. Temperatures in these tanks are monitored by the Tank Monitor And Control System (TMACS), unless indicated otherwise. Temperatures are taken in the waste unless in-waste thermocouples are out of service. See footnote (3). Temperatures below are the highest temperatures recorded in these tanks during this month, and do not exceed the maximum criteria limit for this month. # Temperatures in Degrees F. Total Waste in Inches (Total waste in inches is calculated from Inventory tables and size of tank, not surface level readings) | Hydro/Flammable Gas | | | Orga | nic Salts | | Hiç | h Heat | |---------------------|-------|-------|--------------|-----------|--------------|-----------|-------------| | Total | | | | | Total | | Total | | Tank No. | Temp. | Waste | Tank No. | Temp. | <u>Waste</u> | Tank No. | Temp. Waste | | A-101 | 148 | 347 | A-101 | 148 | 347 | C-106 (2) | 148 72 | | AX-101 (*)(3) | 130 | 272 | AX-102 (*) | 76 | 14 | 1 Tank | | | AX-103 (*) | 109 | 40 | B-103 (*)(3) | 65 | 17 | | | | S-102 | 104 | 207 | C-102 | 81 | 149 | | | | S-111 | 88 | 224 | C-103 | 113 | 66 | | | | S-112 | 83 | 239 | \$-102 | 104 | 207 | | | | SX-101 | 132 | 171 | S-111 | 88 | 224 | 1 | | | SX-102 | 142 | 203 | SX-103 | 162 | 242 | | | | SX-103 | 162 | 243 | SX-106 | 106 | 201 | Ì | | | SX-104 | 154 | 229 | T-111 | 63 | 158 | | | | SX-105(*) | 168 | 254 | TX-105 | 98 | 228 | ŀ | | | SX-106 | 106 | 201 | TX-118 | 73 | 134 | | | | SX-109 (1) | 139 | 96 | TY-104 | 64 | 24 | | | | T-110 | 62 | 133 | U-103 | 84 | 166 | | | | U-103 | 84 | 166 | U-105 | 88 | 147 | | | | U-105 | 88 | 147 | U-106 | 79 | 78 | | | | U-107 | 77 | 143 | U-107 | 77 | 166 | | | | U-108 | 86 | 166 | U-111 | 78 | 115 | | | | U-109 | 82 | 164 | U-203 | 64 | 12 | | | | AN-103 | 107 | 348 | U-204 | 62 | 12 | | | | AN-104 | 107 | 384 | 20 Tanks | | | | | | AN-105 | 105 | 410 | | | | | | | AW-101 (*) | 97 | 410 | | | | | | | SY-101 | 120 | 405 | | | | | | | SY-103 | 94 | 270 | | | | | | | 25 Tanks | | | | | | | | ^(*) Temperatures in these tanks are taken manually on a weekly basis. Although SX-105 is connected to TMACS, it was taken manually in July 1998. All tanks have been removed from the Ferrocyanide Watch List. See Table A-2 for list and dates. ³⁸ Tanks are on the Watch List (8 tanks are on more than one list: A-101, S-102, S-111, SX-103, SX-106, U-103, U-105, U-107) ## TABLE A-3. TEMPERATURE MONITORING IN WATCH LIST TANKS (sheet 2 of 2) #### Notes: #### Unreviewed Safety Ouestion(USO): There is a USQ currently associated with all single-shell tanks, resulting in special controls required, and limiting the work in the tanks. Pumping is on hold until the DOE-RL approval is received for each tank. #### Hydrogen/Flammable Gas: Tanks which are suspected to have a significant potential for hydrogen/flammable gas generation, entrapment, and episodic release. The USQ associated with these tanks is due of the potential consequences of a radiological release resulting from a flammable gas burn, an event not analyzed in the SST Safety Analysis Report (SAR). #### Organic Salts: Single-shell tanks containing concentrations of organic salts ≥3 weight% of total organic carbon (TOC)(equivalent to 10 wt% sodium acetate). The USQ associated with these tanks is because it has been concluded there is a small potential for an organic nitrate accident. Double-shell tanks have >3 weight% TOC but are not on the Watch List because they contain mostly liquid, and there is no credible organic safety concern for tanks which contain mostly liquid. #### High Heat Tanks which contain heat generating strontium-rich sludge and require drainable liquid to be maintained in the tank to promote cooling. Only tank C-106 is on the High Heat Watch List because in the event of a leak, without water additions the tank could exceed temperature limits resulting in unacceptable structural damage. The tank is cooled through evaporation in conjunction with active ventilation. Water is periodically added as evaporation takes place. #### Active ventilation: There are 15 single-shell tanks on active ventilation (eight are on the Watch List as indicated by an asterisk): | C-105 | SX-107 | |----------|----------| | C-106 * | SX-108 | | SX-101 * | SX-109 * | | SX-102 * | SX-110 | | SX-103 * | SX-111 | | SX-104 * | SX-112 | | SX-105 * | SX-114 | | SX-106 * | | Note: A-104, 105 and 106 exhauster has been out of service since 1991 and is no longer considered actively ventilated. Although C-104 has a cascade line with C-105, it is not considered to be actively ventilated. #### Footnotes: - (1) Tank SX-109 has the potential for flammable gas accumulation only because other SX tanks vent through it. - (2) Tank C-106 is on the Watch List because in the event of a leak without water additions the tank could exceed temperature limits resulting in unacceptable structural damage. - (3) There are no in-waste temperatures for tanks AX-102 and B-103. The waste level in these tanks is lower than the lowest thermocouple in these trees. Temperatures in this table show the maximum in the tanks taken in the vapor space. ### TABLE A-4. TEMPERATURE MONITORING IN NON-WATCH LIST TANKS July 31, 1998 #### SINGLE-SHELL TANKS WITH HIGH HEAT LOADS (>40,000 Btu/hr) Ten tanks have high heat loads for which temperature surveillance requirements are established by OSD-T-151-00013. Only one of these tanks (241-C-106) is on the High Heat Watch List. In an analysis, WHC-SD-WM-ER-333, "Evaluation of Heat Sources in High Heat Single Shell Tanks," Bander, 1994, it was determined that six of the ten tank have heat sources greater than 40,000 Btu/h. Additionally, although four tanks have heat loads less than 40,000 Btu/h, it is recommended that these tanks remain on the High Heat Load Listbecause of uncertainties in the parameters used in these analyses. It is estimated that the current analysis predicts the heat loads within +/- 20%. Temperatures in these tanks did not exceed OSD requirements for this month. All high heat load tanks, with the exception of 241-A-104 and 241-A-105, are on active ventilation. All high heat load tanks are monitored by the Tank Monitor and Control System (TMACS), with the exception of A-104 and A-105, which are taken manually on a weekly basis. | | Temperature | Total Waste | (Total Waste In Inches is | |-----------|-------------|-------------|----------------------------------| | Tank No. | (F.) | In Inches | calculated from inventory table | | A-104 | 170 | 10 | and tank size, not surface level | | A-105 | 151 | 07 | readings) | | C-106 (*) | 148 | 72 | | | SX-107 | 164 | 43 | | | SX-108 | 186 | 37 | | | SX-109 | 139 | 96 | | | SX-110 | 162 | 28 | | | SX-111 | 186 | 51 | | | SX-112 | 147 | 39 | | | SX-114 | 176 | 71 | | | 10 Tanks | | | | #### (*) C-106 on High Heat Load Watch List Highest temperature in 34 lateral thermocouples beneath A-105: 237 #### SINGLE SHELL TANKS WITH LOW HEAT LOADS (<=40,000 Btu/hr) There are 108 low heat load non-watch list tanks. Temperatures in tanks connected to TMACS are monitored by TMACS; temperatures in those tanks not yet connected to TMACS are manually taken semiannually in January and July. Temperatures obtained were within historical ranges for the applicable tank. No temperatures have been obtained for several years in the tanks listed below. Most of these tanks have no thermocouple tree. | Tank No. | <u>Tank No.</u> | |----------|-----------------| | BX-104 | TX-101 | | BY-102 | TX-110 | | BY-109 | TX-114 | | C-204 | TX-116 | | SX-115 | TX-117 | | T-102 | U-104 | | T-105 | | ### TABLE A-5. SINGLE-SHELL TANKS MONITORING COMPLIANCE STATUS 149 TANKS (Sheet 1 of 6) July 31, 1998 The following table indicates whether Single-Shell tank monitoring was in compliance with the requirements as specified in the applicable documents as of the last day of the applicable month: #### NOTE: All Watch List and High Heat tank temperature monitoring is in compliance. (4) All Dome Elevation Survey monitoring is in compliance. All Psychrometries monitoring is in compliance (2). Drywell monitoring is done "as needed" (9). In-tank photos/videos are taken "as needed" (3) | = in compliance with all applicable documentation | |---| | = noncompliance with applicable documentation | | = Out of Service | | = LOW readings taken by Neutron probe | | = Plant Operating Procedure, TO-040-650 | | = Surface level measurement devices | | Operating Specifications Doc., OSD-T-151-00013, -00031 | | Not applicable (not monitored, or no monitoring schedule) | | # Applicable equipment not installed | | | | | Tenk Category | | Temperature | Primary
Leak | Surf | LOW
Readings | | | |--------|---|------|-------------|-----------------|-------|-----------------|--------|---------| | Tank | | | Readings | Detection | | (OSD)(5,7) | | | | Number | List | Heat | (4) | Source (5) | MT | FIC | ENRAF | Neutron | | A-101 | × | | | LOW | None | None | | | | A-102 | | | | None | None | | None | None | | A-103 | | | | LOW | None | None | | | | A-104 | | X | | None | None | None | | None | | A-106 | | X | | None | | None | None | None | | A-106 | | | | None | None | None | | None | | AX-101 | X | | | LOW | None | None | | (10) | | AX-102 | X | | | None | | None | None | None | | AX-103 | * | | | None | None | None | | None | | AX-104 | | | | None | None | None | | None | | B-101 | | | | None | None | | None | None | | B-102 | | | | ENRAF | None | None | | None | | B-103 | X | | | None | None | | None | 0/5 | | B-104 | | | | LOW | | None | Florie | | | B-105 | | | | LOW | | None | None | | | B-106 | | | | FIC | None | | None | None | | B-107 | | | | None | | None | None | None | | B-108 | | | | None | None | | None | None | | B-109 | | | | None | | None | None | None | |
B-110 | 300000000000000000000000000000000000000 | | | LOW | 0/\$ | None | None | | | B-111 | | | | LOW | None | | None | | | B-112 | | | | ENRAF | None | None | | None | | B-201 | | | | MT | | None | None | None | | B-202 | | | | MT | | None . | None | None | | B-203 | | | | MT | | Mary | None | None | | B-204 | | | | MT | | None | None | None | | BX-101 | | | | ENRAF | None | None | | None | | BX-102 | | | | None | None | None | | None | | BX-103 | | | | ENRAF | None | None | | None | | BX-104 | | | None | ENRAF | Plane | None | | None | | BX-105 | | | | None | None | None | | None | | BX-106 | 000000000000000000000000000000000000000 | | | ENRAF | None | None | | None | | BX-107 | 800000000000000000000000000000000000000 | | | ENRAF | None | None | | None | TABLE A-5. SINGLE-SHELL TANKS MONITORING COMPLIANCE STATUS 149 TANKS (Sheet 2 of 6) | | | Category | Temperature | | Primary Leak Surface Level Readings (1) Detection (OSD) | | | | | |----------------|---|---|---|-------------------------|---|--------------|--------------|--|--| | Tank
Number | Watch
List | High
Heat | Readings (4) | Detection
Source (5) | MI | (OSD) | I ENRAF | (OSD)(5,7)
Neutron | | | BX-108 | 200 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (4) | None | None | None | | None | | | BX-109 | | | | None | None | None | | Nace | | | BX-110 | | | | None | None | None | | 2000 | | | BX-111 | | | | LOW | None | None | | | | | BX-112 | | | | ENRAF | None | None | | flore | | | BY-101 | | | | LOW | | None | None | | | | BY-102 | | | None | LOW | 0/5 | None | None | | | | BY-103 | | | | LOW | None | Bone | | | | | BY-104 | | | | LOW | 0/8 | Reine . | | 100000000000000000000000000000000000000 | | | BY-105 | | | | FOM | | More | Kerre | | | | BY-106 | | | | row | | None | None | | | | BY-107 | | | | LOW | | None | Mone | | | | BY-108 | | | | None | | None | Maria | None | | | BY-109 | | | None | LOW | None | 0/8 | Name | | | | BY-110 | | | | LOW | None | None | | | | | BY-111 | | | | LOW | None | None | | | | | BY-112 | (88 (85 (810)) 80) | | | LOW | | None | None | | | | C-101 | | | | None | | None | None | None | | | C-102 | Х | | | None | None | | None | Nore | | | C-103 | X | | | ENRAF | None | None | | None | | | C-104 | | | | None | None | | None | None | | | C-106 | | | | None | None | None | | More | | | C-106 (3) | | ž. | | ENRAF | None | None | | Nane | | | C-107 | | | | ENRAF | None | None | | None | | | C-108 | | | | None | | None | None | None | | | C-109
C-110 | | | | None | | None | None | None | | | C-110 | 1000010100100100 | | | MT | | None | None | None | | | C-112 | | | | None
None | | None | None | None | | | C-201 | | | S 2000 00 00 00 00 00 00 00 00 00 00 00 0 | None | None | None | | None | | | C-202 | 000000000000000000000000000000000000000 | | | None | | None
None | None
None | None | | | C-203 | | | | None | | Norte | None | None | | | C-204 | | | None | None | | None | | Nene | | | S-101 | | | | ENRAF | None | None | None | None | | | S-102 | 34 | | | ENRAF | None | None | | | | | S-103 | | | | ENRAF | None | None | | | | | S-104 | | | | LOW | | None | None | State of the | | | S-105 | | | | LOW | None | None | | | | | S-106 | | | | ENRAF | Norm | None | | | | | S-107 | | | | ENRAF | None | None | | None | | | S-106 | | | | LOW | None | None | | | | | S-109 | | | | LOW | None | None | | | | | S-110 | | | | LOW | None | None | | | | | S-111 | X | | | ENRAF | None | None | | | | | S-112 | X | | | LOW | None | None | | | | | SX-101 | | | | LOW | Noise | None | HH | | | | SX-102 | | | | LOW | None | None | | | | | SX-103 | X | | | FOM | None | None | | | | | 8X-104 | X | | | LOW | None | None | | | | | SX-105 | × | | | LOW | Nore | None | | | | | SX-106 | × | | | ENRAF | None | None | | | | | SX-107 | | 4. X | | None | | None | Nerva | None | | | SX-108 | | × | | None | | None | None | None | | TABLE A-5. SINGLE-SHELL TANKS MONITORING COMPLIANCE STATUS 149 TANKS (Sheet 3 of 6) | | | ategory | Temperature | Primary
Leak | Surf | ace Level Readin | gs (1) | LOW
Readings | | | |------------------|--|--------------|-----------------|-------------------------|--|------------------|--------------|---|--|--| | Tank
Number | Watch
List | High
Heat | Readings
(4) | Detection
Source (5) | MT | (OSD) | ENRAF | (OSD)(5,7)
Neutron | | | | SX-109 (3) | X | X | | None | | None | Nene | Plone | | | | 8X-110 | 201000000000000000000000000000000000000 | X | | None | | Vore | , Kerje | A series | | | | SX-111 | | X | | None | | None | More | New | | | | 8X-112 | | ж | | None | | None | | | | | | SX-113 | | | | None | | Value | 9.55 | | | | | SX-114 | | X | | None | | No. | ALC: TO | | | | | SX-115 | | | | None | | | 2000 | | | | | T-101 | | | | None | None | 1674 | | | | | | T-102 | | | | ENRAF | | | | 1,000 | | | | T-103 | | | | None | Co. | None | | i de la companya | | | | T-104 | | | | LOW | Nese | (libra) | | | | | | T-105 | | | tene | None | 1,000 | No. | | Hore | | | | T-106 | | | | None | | Plate | | Hore | | | | T-107 | | | | ENRAF | P. Care | Nore | | | | | | T-108 | | | | ENRAF | New State of the S | None | | None | | | | T-109 | | | | None | None | None | | None | | | | T-110 | X | | | LOW | None | None | | | | | | T-111 | X | | | LOW | None | None | | | | | | T-112 | | | | ENRAF | New | None | | None | | | | T-201 | | | | MT | | None | None | Plone | | | | T-202 | | | | MT | | None | None | None | | | | T-203 | | | | None | | None
None | None
None | Hone
Hene | | | | T-204 | | | 100 | MT
ENRAF | None | None | PROFIES: | No. | | | | TX-101 |
6,6,6,0,0,0,0,0,0,0 | | None | LOW | None | None | | | | | | TX-102
TX-103 | \$500000 0000000000000000000000000000000 | | | None | None | None | | None | | | | TX-104 | | | | None | None | None | | None | | | | TX-105 | X | | | None | None | None | | None (7) | | | | TX-106 | • | | | LOW | None | None | | 100.00 | | | | TX-107 | 887.05.05.05.05.00.00 | | | None | tions | None | | None | | | | TX-108 | \$0.00 mm in 10.00 kg | | | None | Norte | None | | Mone | | | | TX-109 | | | | LOW | None | Nore | | | | | | TX-110 | | | None | LOW | None | None | | | | | | TX-111 | | | | LOW | tions | None | | | | | | TX-112 | | | | LOW | None | None | | | | | | TX-113 | | | | LOW | None | None | | | | | | TX-114 | | | None | LOW | None | None | | | | | | TX-115 | | 6.000.000 | | LOW | None | None | | | | | | TX-116 | | | None | None | None | None | | None | | | | TX-117 | | | None | LOW | None | None | | | | | | TX-118 | | | | LOW | None | None | | | | | | TY-101 | | | | None | None | None | | None | | | | TY-102 | | | | ENRAF | None | Norse | | None | | | | TY-103 | | | | LOW | None | None | | | | | | TY-104 | | | | ENRAF | None | None | | libro. | | | | TY-106 | | | | None | None | None | | None | | | | TY-106 | | | | None | None | None | | | | | | U-101 | | | | MT | | None | None | None | | | | U-102 | 300000000000000000000000000000000000000 | | | LOW | Nee | None | | | | | | U-103 | X | | | ENRAF | None | Nome | | | | | | U-104 | | | None | None | | None | None | None | | | | U-106 | × | | | ENRAF | None | None | | | | | | U-106 | X | | | ENRAF | None | None | | | | | TABLE A-5. SINGLE-SHELL TANKS MONITORING COMPLIANCE STATUS 149 TANKS (Sheet 4 of 6) | | Tank Ca | Itegory | Temperature | Primary
Leak | Su | rface Level Reac | lings (1) | LOW
Readings | |---------------|----------------|---------------|-------------|-----------------|--------------------|------------------|---------------------------------------|-----------------| | Tenk | Watch High | | Readings | Detection | 1 | (OSD)(5,7) | | | | Number | List | Heat | (4) | Source (5) | МТ | FIC | ENRAF | Neutron | | U-107 | | | | ENRAF | None | New | | | | U-108 | | | | LOW | Nome | 1000 | | | | U-109 | | | | ENRAF | None | | | | | U-110 | | | | None | None | | | | | U-111 | | | | LOW | None | | | | | U-112 | | | | None | | Nest | Notes | listra. | | U-201 | | | | MT | | (Varie | None | Bine | | U-202 | | | | MT | | None | None | Name | | U-203 | | | | None | | Nema | None | Vote | | U-204 | X | | | ENRAF | None | None | | Boile | | Catch Tanks a | and Special Su | ırveiliance F | acilities | | | | | | | A-302-A | SVA | 377 | N/A | (9) | Nores | None | | None | | A-302-B | NA | N/A | EIA . | (5) | | None | N. N. | None | | ER-311 | N/A | NA | NA | (6) | None | | None | baurse | | AX-152 | NA | NIA | 10/A | (6) | | None | None | None | | AZ-151 | N/A | NZA | NIA | (9) | None | | · · · · · · · · · · · · · · · · · · · | Nore | | AZ-154 | MA | NA | LIA. | (9) | | None | | None | | BX-TK/SMP | NA | N/A | N/A | (8) | | None | None | Bitte | | A-244 TK/SMP | NA | NIA | N/A | (6) | None | None | None | None | | AR-204 | NIA | N/A | X/A | (0) | e foreign contract | | Norma | Nerre | | A-417 | NIA | N/A | N/A | (6) | None | None | None | None | | A-350 | NA | N/A | NA | (6) | None | None | None | None | | CR-003 | NA | N/A | | (5) | None | None | None | None | | Vent Sta. | NIA | N/A | N/A | | | None | None | None | | S-302 | NA | N/A | N/A | LÓ) | None | None | | None | | S-302-A | N/A | N/A | N/A | (6) | None | | None | None | | 5-304 | NA | N/A | N/A | (8) | None | None | | None | | TX-302-B | N/A | N/A | NIA | (6) | | None | None | | | TX-302-C | N/A | N/A | N/A | (6) | None | None | | | | U-301-B | N/A | N/A | N/A | (6) | None | None | | None | | UX-302-A | NIA | N/A | N/A | (6) | None | tione | | None | | S-141 | N/A | N/A | NA | (6) | 0/8 (12) | None | None | None | | S-142 | N/A | N/A | N/A | (6) | 0/5 (12) | None | None | None | | otale: | 32 | 10 | N/C: 0 | | N/C: 0 | N/C: 0 | N/C: O | N/C: 0 | | 149 tenks | Watch | High | | | | | | | | | List | Heat | | | [| 1 | | 1 | | | Tanks | Tanka | [] | | ſ | | | | | | (4) | (4) | 1 | | | | | | ### TABLE A-5. SINGLE-SHELL TANKS MONITORING COMPLIANCE STATUS -149 TANKS (Sheet 5 of 6) #### Footnotes: - 1. All SSTs have either manual tape, FIC, (or ENRAF) surface level measuring devices. Some also have zip cords. - ENRAF gauges are being installed to replace FICs (or sometimes manual tapes). The ENRAF gauges are being connected to TMACS, but many are currently being read manually from the field. See Table A-7 for list of ENRAF installations. - 2. High heat tanks have active exhausters; psychrometrics can be taken in the high heat tanks. Psychrometric readings are taken on an "as needed" basis with the exception of tanks C-105 and C-106. Hanford Federal Facility Agreement and Consent Order," Washington State Department of Ecology, U. S. Environmental Protection Agency, and U. S. Department of Energy," Fourth Amendment 1994 (Tri-Party Agreement) requires psychrometric readings to be taken in C-105 and C-106 on a monthly frequency. Also, SX-farm now has psychrometrics taken monthly. - 3. C-106 and SX-109 these tanks are on both category lists (Watch List and high heat list) C-106 is the only tank on the high heat list included on the High Heat Watch List; SX-109 is on the Organics Watch List, and also on the high heat list (but not on the High Heat Watch List). - 4. Temperature readings may be regulated by OSD or POP. Temperatures cannot be obtained in 13 low heat load tanks (see Table A-4). The OSD does not require readings or repair of out-of service thermocouples for the low heat load (≤40,000 Btu/h) tanks. However, the POP requires that attempts are to be made semiannually in January and July to obtain readings for these tanks. - Temperatures for many tanks are monitored continuously by TMACS; see Table A-8, TMACS Monitoring Status. - 5. Document WHC-OSD-T-151-00031, "Operating Specifications for Tank Farm Leak Detection," requires that single-shell tanks with the surface level measurement device contacting liquid, partial liquid, or floating crust surface, will be monitored for leak detection on a daily basis. Tanks with a solid surface will be monitored for leak detection on a weekly basis by taking neutron scan data from a Liquid Observation Well (LOW), if an LOW is present. Tanks with a solid surface but without LOWs will not be monitored for leak detection if the tank has been interim stabilized, until an LOW is installed. Non-interim-stabilized tanks will have drywell surveys taken as a backup on a monthly basis if surface or interstitial level measurement equipment is unavailable. The OSD specifies what leak detection methods are to be used for each tank, and the requirements if the readings are not taken on the required frequency or if equipment is out of service. - 6. Leak detection for the catch tanks is performed by monitoring for the buildup of liquid in the secondary containment (for most tanks with secondary containment) or for decrease in the liquid level for those tanks without secondary containment or secondary containment monitoring. - Catch tanks 240-S-302 and 241-S-302-A are monitored for intrusions only, and are not subject to leak detection monitoring requirements until liquid is present above the intrusion level. - Weight Time Factor is the surface level measuring device currently used in A-417, A-350 and 244-A-Tank/Sump. DCRT CR-003 is inactive and measured in gallons. - 7. Document WHC-SD-WM-TI-605, REV. 0, dated January 1994, describes the rationale for Liquid Observation Well (LOW) installation priority. This priority is based on tank leak status, tank surface condition, and tank stabilization status. Also included is a listing of tanks with the waste level being below two feet which have no priority assigned because no effort will be made to install LOWs in the near future. LOW probes are unable to accurately monitor interstitial liquid levels less than two feet high. ## TABLE A-5. SINGLE-SHELL TANKS MONITORING COMPLIANCE STATUS - 149 TANKS (Sheet 6 of 6) Tanks which will not receive LOWs: | A-102 | BX-101 | C-201 | T-106 | |--------|--------|--------|--------| | A-104 | BX-103 | C-202 | T-108 | | A-105 | BX-105 | C-203 | T-109 | | AX-102 | BX-106 | C-204 | TX-107 | | AX-104 | BX-108 | SX-110 | TY-102 | | B-102 | C-108 | SX-113 | TY-104 | | B-103 | C-109 | SX-115 | TY-106 | | B-112 | C-111 | T-102 | U-101 | | | | T-103 | U-112 | Total - 34 Tanks - 8. TX-105 the riser has been removed; the LOW has not been monitored since January 1987. Liquid levels are being taken. - 9. All drywell scans are done by request only, when required in addition to, or as a BACKUP for, a PRIMARY leak detection method, per OSD-T-151-00031. Currently, there are only two tanks which require drywell scans (C-105 and C-106); these are taken monthly. Only two tank farms, A and SX, have laterals. There are currently no functioning laterals and no plans to prepare these for use. - 10. AX-101 LOW readings are taken by gamma sensors. - 11. SX-101 ENRAF data suspect; core sampling done displacer sticks on top of crust or goes into hole. LOW is primary device. - 12. Catch Tanks S-141 and S-142 have no M.T. readings. # TABLE A-6. DOUBLE-SHELL TANKS MONITORING COMPLIANCE STATUS 28 TANKS (Sheet 1 of 2) July 31, 1998 The following table indicates whether Double-Shell tank monitoring was in compliance with the requirements as specified in the applicable documents as of the last day of the applicable month. NOTE: Dome Elevation Surveys are not required for DSTs. Psychrometrics and in-tank photos/videos are taken "as needed" (2) LEGEND: (Shaded) = In compliance with all applicable documentation N/C = Noncompliance with applicable documentation FIC/ENRAF = Surface level measurement devices M.T. OSD = OSD-T-151-0007, OSD-T-151-0031 None = no M.T., FIC or ENRAF installed lo/s = Out of Service W.F. = Weight Factor Red. = Radiation | |
| | | | | Re | diation Reading | 78 | | |---------------------|-----------------------|--------------------------------|--------|----------------------------------|--------|--------------|----------------------------------|-----------|--| | Tank | | Temperature
Readings
(3) | Sui | Surface Level Readings (1) (OSD) | | | Leak Detection Pits (4)
(OSD) | | | | Number | Watch List | (OSD) | M.T. | FIC | ENRAF | W.F. | Rad. (8) | (OSD) | | | AN-101 | | | | None | | | 181 | | | | AN-102 | | | | | None | 0/5 | (8) | | | | AN-103 | X | | | None | | | (8) | | | | AN-104 | | | O/B | None | | | (8) | i familia | | | AN-105 | | | 0/8 | None | | | (8) | | | | AN-106 | | | | 0/8 | None | | (8) | | | | AN-107 | | | | | None | | (8) | | | | AP-101 | | | | | None | Q/S (9) | (8) | | | | AP-102 | | | | | None | O/S (9) | (8) | | | | AP-103 | | | | | Моте | O/S (9) | (8) | | | | AP-104 | | | 0/\$ | | None | O/S (9) | (8) | | | | AP-105 | | | | | None | O/S (9) | (8) | | | | AP-106 | | | | | More | O/S (9) | (8) | | | | AP-107 | | | | | None | 0/5 (9) | (8) | | | | AP-108 | | | | | None | 0/8 (9) | (8) | | | | AW-101 | X | | 0/8 | None | | | (8) | | | | AW-102 | | | | | f6) | | (8) | | | | AW-103 | | | | None | | | (8) | | | | AW-104 | | | | None | | 0/5 | (9) | | | | AW-105 | | | | None | | | 481 | | | | AW-106 | | | | None | | | (8) | | | | AY-101 | | | | None | | 0/8 | (8) | | | | AY-102 | | | | None | | | (8) | (5) | | | AZ-101 | | | 0/8 | None | | | (8) | (5) | | | AZ-102 | | | | | None | | | (5) | | | SY-101 | X | | 0/8 | None | | (7) | (8) | (5) | | | SY-102 | | | | None | | 4 <i>1</i> 1 | (8)
(8) | | | | SY-103 | | | | None | | (7) | (8) | | | | Totale:
28 tanka | 6
Watch List Tanks | N/C: 0 | N/C: 0 | N/C: O | N/C: O | N/C: 0 | N/C: 0 | N/C: 0 | | ### TABLE A-6. DOUBLE-SHELL TANKS MONITORING COMPLIANCE STATUS - 28 TANKS (Sheet 2 of 2) #### Footnotes: - Some double-shell tanks have both FIC and manual tape which is used when the FIC is out of service. Noncompliance (N/C) will be shown when no readings are obtained. ENRAF gauges are being installed to replace FICs. The ENRAF gauges are being connected to TMACS, but some are currently being read manually. - 2. Psychrometric readings are taken on an "as needed" basis. No psychrometric readings are currently being taken in the double-shell tanks. - 3. OSD specifies double-shell tank temperature limits, gradients, etc. - 4. Applicable OSD and HNF-IP-0842, latest revisions, are used as guidelines for monitoring Leak Detection Pits. See also (8) below. - AY-102 annulus is O/S to facilitate vent line removal for Project W-030: Leak Detection Probe device is still monitored. AY-101 and AZ-101/102 are monitored only by the annulus Leak Detection Probe Measurement device. - 6. AW-102 has ENRAF, FIC and M.T. At some point the FIC will be removed. - 7. SY-101 and SY-103; CWF reading are above normal range of 24 inches. - 8. USQ TF-97-0038, dated April 28, 1997, specifies discontinuing the use of leak detection pit radiation monitoring equipment in all double-shell tank farms where the leak detection pits are used as tertiary leak detection. This applies to all double-shell tank farms Also, two radiation monitors used for leak detection for transfer lines will not be discontinued (CRM-101B in AY farm and CRM-101/102-1 in AZ farm) - these were not included in the USQ. May 1998 - RAD monitoring is no longer required in these monitors per TSR-006 (Rev 0-6) 9. Weekly readings being obtained by Instrument Technicians in these tanks: AP-103C (for tanks AP-101 - 104) AP-105C (for tanks AP-105 - 108) # TABLE A-7. ENRAF SURFACE LEVEL GAUGE INSTALLATION AND DATA INPUT METHODS July 31, 1998 | | | | | | | | | | | | | | |------------------|--|----------|------------------|-----------------|--------------|------------------|----------------|---------------|-------------|------------------|----------------|--------| | LEGEND | END CASS — Computer Automated Surveillance System | | | | | | | | | | | | | | SACS = Surveillance Analysis Computer System | | | | | | | | | | | | | | TMACS | = Tank M | lonitor and | Control Syste | ım | | | | | | | | | | Auto = Automatically entered into TMACS and electronically transmitted to SACS | | | | | | | | | | | | | J | Manual = EITHER manually entered into CASS by field operators and electronically transmitted to SACS | | | | | | | | | | | | | | | OR man | usliy entere | d directly into | SACS by | surveillance | personnel, fi | rom Field Dat | <u>a sl</u> | neets | | | | <u> </u> | | | | - | | | | | | | | | | EAST A | AREA | | | | * (\ | WEST | AREA | , | | | | | | Tank | Installed | lance | Tank | Installed | Innu | Tank | Installed | Innut | 300 | Tank | installed | Inne | | | | | 2.00 | | Input | | 1 _ | Input | | | | Input | | No. | Date | Method | No. | Date | Method | No. | Date | Method | | No. | Date | Method | | A-101 | 09/95 | Manual | B-201 | | <u> </u> | S-101 | 02/95 | Menual | \$200 l | TX-101 | 11/96 | Auto | | A-102 | | | B-202 | | | S-102 | 06/95 | Menuel | | TX-102 | 05/96 | Auto | | A-103 | 07/96 | Manual | B-203 | | ļ | S-103_ | 05/94 | Auto | - | TX-103 | 12/95 | Auto | | A-104 | 05/96 | Manual | B-204 | | | S-104 | | | (), s | TX-104 | 03/96 | Auto | | A-106 | | | BX-101 | 04/96 | Auto | S-105 | 07/95 | Manual | 233 | TX-105 | 04/96 | Auto | | A-106 | 01/96 | Manual | BX-102 | 06/96 | Auto | S-106 | 06/94 | Auto | | TX-106 | 04/96 | Auto | | AN-101 | 08/96 | Menuel | BX-103 | 04/96 | Auto | S-107 | 06/94 | Auto | -888 | TX-107 | 04/96 | Auto | | AN-102 | 09/05 | Monard | BX-104 | 05/96 | Auto | S-108 | 07/95 | Manual | - | TX-108 | 04/96 | Auto | | AN-103
AN-104 | 08/95
08/95 | Manual | BX-105 | 03/96 | Auto | S-109 | 08/95 | Manual | - | TX-109 | 11/95 | Auto | | AN-105 | | Manual | BX-106 | 07/94 | Auto | S-110 | 08/95 | Manual | - | TX-110 | 06/96 | Auto | | AN-106 | 08/95 | Manual | BX-107 | 06/96
05/96 | Auto | S-111
S-112 | 06/94 | Auto | - | TX-111 | 05/98 | Auto | | AN-107 | ļ | | 8X-108 | | Auto | execute. | 05/95 | Auto | - 14 | TX-112 | 05/96 | Auto | | AP-101 | | | BX-109
BX-110 | 08/95
06/96 | Auto | SX-101 | 04/95 | Auto | - | TX-113 | 05/96 | Auto | | AP-102 | | | BX-110 | 05/96 | Auto
Auto | SX-102
SX-103 | 04/95 | Auto | - | TX-114 | 05/96 | Auto | | AP-103 | - | | BX-112 | 03/96 | Auto | SX-103 | 04/95
05/95 | Auto | - | TX-115 | 05/96 | Auto | | AP-104 | | | BY-101 | 03/80 | Auto | SX-104 | 05/95 | Auto | - | TX-116 | 05/96
06/96 | Auto | | AP-105 | | | BY-102 | | | SX-106 | 08/94 | Auto | | TX-117
TX-118 | 03/96 | Auto | | AP-106 | | | BY-103 | 12/96 | Manual | SX-107 | 00/24 | 7010 | 100 | TY-101 | 07/95 | Auto | | AP-107 | | | BY-104 | 12,00 | | SX-107 | | | ***** | TY-102 | 09/95 | Auto | | AP-108 | | | BY-105 | | | SX-109 | | | 200 | TY-103 | 09/95 | Auto | | AW-101 | 08/95 | Auto | BY-106 | | | SX-110 | | | 1000 | TY-104 | 06/95 | Auto | | AW-102 | 05/96 | Auto | BY-107 | | | SX-111 | | | | TY-105 | 12/95 | Auto | | AW-103 | 05/96 | Auto | BY-108 | | | SX-112 | | | - | TY-106 | 12/95 | Auto | | AW-104 | 01/96 | Auto | BY-109 | | | SX-113 | | | 100 | U-101 | | | | AW-105 | 06/96 | Auto | BY-110 | 2/97 | Manual | SX-114 | <u> </u> | | | U-102 | 01/96 | Manual | | AW-106 | 06/96 | Auto | BY-111 | 2/97 | Manual | SX-115 | | | | U-103 | 07/94 | Auto | | AX-101 | 09/95 | Auto | BY-112 | | | SY-101 | 07/94 | Auto | - | U-104 | -1104 | 7,000 | | AX-102 | | | C-101 | | | SY-102 | 06/94 | Manual | | U-105 | 07/94 | Auto | | AX-103 | 09/95 | Manual | C-102 | | | SY-103 | 07/94 | Auto | - | U-106 | 06/94 | Auto | | AX-104 | 10/98 | Manual | C-103 | 08/94 | Auto | T-101 | 05/95 | Manual | | J-107 | 08/94 | Auto | | AY-101 | 03/96 | Manual | C-104 | | | T-102 | 06/94 | Auto | - | U-10B | 05/95 | Manual | | AY-102 | 01/98 | Auto | C-105 | 05/96 | Manual | T-103 | 07/95 | Manual | | J-109 | 07/94 | Auto | | AZ-101 | 08/96 | Manual | C-106 | 02/96 | Auto | T-104 | 12/95 | Menuel | 3 | J-110 | 01/96 | Manuai | | AZ-102 | | | C-107 | 04/95 | Auto | T-106 | 07/95 | Manual | | J-111 | 01/96 | Manual | | B-101 | | | C-108 | | | T-106 | 07/95 | Manual | | J-112 | 77 111 | | | B-102 | 02/95 | Manuel | C-109 | | | T-107 | 06/94 | Auto | ا 🗱 | J-201 | | | | B-103 | | | C-110 | | | T-108 | 10/95 | Manuel | (C) | J-202 | | | | B-104 | | | C-111 | | | T-109 | 09/94 | Manual | ** (| J-203 | | | | B-105 | | | C-112 | 03/96 | Manual | T-110 | 05/96 | Auto | W | J-204 | 6/98 | Manuel | | B-106 | | | C-201 | | | T-111 | 07/95 | Manual | | | | | | B-107 | | | C-202 | | | T-112 | 09/95 | Menual | | | | | | B-108 | | | C-203 | | | T-201 | | | | | | | | B-109 | | | C-204 | | | T-202 | | | | | | | | B-110 | | | | | | T-203 | | | ** | | | | | B-111 | | | | | | T-204 | | | * |] | | | | B-112 | 03/95 | Manual | | | | | | | | [| | | | Total Eas | t Area: 42 | | | | | Total We | est Area: 66 | | | | | | | | A.C. incastled | | | | | | | | _ | | | | # TABLE A-8. TANK MONITOR AND CONTROL SYSTEM (TMACS) July 31, 1998 Note: Indicated below are the number of tanks having at least one operating sensor (some tanks have more than one sensor: multiple sensors of the same type in a tank are not shown in the table) for example: 10 tanks in BY-Farm have at least one operating TC sensor and 3 tanks in BY-Farm have at least one operating RTD sensor. Acceptance Testing Completed: Sensors Automatically Monitored by TMACS | | Tempera | | | T | | | |-----------------------|--------------|------------|-------------|----------|----------|--------| | ĺ | | Resistance | | [| ĺ | ĺ | | EAST AREA | Thermocouple | Thermal | ENRAF | | | Gas | | | Tree | Device | Level | Pressure | Hydrogen | Sample | | Tank Farm | (TC) | (RTD) | Gauge | (b) | (c) | Flow | | A-Farm (6 Tanks) | 1 | 1 | | ,,,,, | 1 | 1 | | AN-Farm (7
Tanks) | 7 | | T-T-Year | 7 | 3 | 3 | | AP-Farm (8 Tanks) | | | | | | | | AW-Farm (6 Tanks) | 6 | | 6 | | 1 | 1 | | AX-Farm (4 Tanks) | 2 | | | | | | | AY-Farm (2 Tanks) | | | 1 | | | | | AZ-Farm (2 Tanks) | | | | | | | | B-Farm (16 Tanks) | 1 | | | | | | | BX-Farm (12 Tanks) | 11 | | 12 | | | | | BY-Farm (12 Tanks) | 10 | 3 | | | | | | C-Farm (16 Tanks) | 15 | 1 | 3 | 1 | | | | TOTAL EAST AREA | | | | | | | | (91 Tanks) | 53 | 4 | 22 | 8 | 5 | 5 | | WEST AREA | | | | | | | | S-Farm (12 Tanks) | 12 | | 5 | 1 | 3 | 3 | | SX-Farm (15 Tanks) | 14 | | 6 | 1 | 7 | 7 | | SY-Farm (3 Tanks) (a) | 3 | | 2 | 11 | 2 | 2 | | T-Farm (16 Tanks) | 14 | 1 | 3 | | 1 | 1 | | TX-Farm (18 Tanks) | 13 | | 18 | | | | | TY-Farm (6 Tanks) | 6 | 3 | 6 | | | | | U-Farm (16 Tanks) | 15 | | 5 | 4 | 5 | 5 | | TOTAL WEST AREA | | | | | | | | (86 Tanks) | 81 | 4 | 45 | 7 | 18 | 18 | | TOTALS (177 Tanks) | 130 | 8 | 67 | 15 | 23 | 23 | ⁽a) Tank SY-101 has 2 gas sample flow sensors plus 2 vent flow sensors, and 2 ENRAFs. ⁽b) Each tank has low and high range sensors (9x2=18 sensors) ⁽c) Each tank has low and high range sensors (17x2=34 sensors) ### APPENDIX B # DOUBLE SHELL TANK WASTE TYPE AND SPACE ALLOCATION TABLE B-1. DOUBLE-SHELL TANK WASTE TYPE AND SPACE ALLOCATION JULY 1998 DOUBLE-SHELL TANK INVENTORY BY WASTE TYPE | SDACE | DESIGNATED | FOR | SPECIFIC USE | |-------|------------|-----|--------------| | DOUBLE-SHELL I ANK INVE | NTORY BY WASTE TYPE | SPACE DESIGNATED FOR SPEC | IFIC USE | |--|---------------------------|---|--------------------------------------| | Complexed Waste | 3.96 Mgsl | Spare Tanks (3) | 2.28 Mgal | | (AN-102, AN-106, AN-107, SY-101,
SY-103, (AY-101 , AP-108 (DC)) | | (1 Aging & 1 Non-Aging Waste Tank) | | | | | Watch List Tank Space | 0:69 Mgal | | Concentrated Phosphate Waste (AP-102) | 1.09 Mgai | (AN-103, AN-104, AN-105, AW-101, SY-101, | , SY-103) | | Double-Shell Sturry and Sturry Feed
(AN-103, AN-104, AN-105, AP-101,
AW-101, AW-106) | 4:4: Mgel | Segregated Tank Space
(AN-102, AN-106, AN-107, AP-102, AP-108,
AZ-101, AZ-102) | 3:24 Mgal
AY-101 | | Aging Waste (NCAW) at 5M Na 1.22 Mgai
Dilute in Aging Tanks 0.88 Mgai
(AZ-101, AZ-102) | | Receiver/Operational Tank Space (2)
(AN-101, AP-106, AW-102, AW-106, SY-102 | 3:24 Mgal
) | | Dilute Waste (1)
(AN-101, AP-103, AP-105, AP-104, AP-
AW-102, AW-103, AW-104, AW-105,
AY-102, SY-102) | 3.43 Mgai
106, AP-107, | Total Specific Use Space (07/31/98) | 9:45 Mgal | | | | TOTAL DOUBLE-SHELL TANK SE | PACE | | NCRW, PFP and DST Settled Solids | 4.03 Mgai | 24 Tanks at 1140 Kgal | 27.36 Mgal | | (All DST's) | | 4 Tanks at 980 Kgal | 3.92 Mgal
31,28 Mgal | | Total Inventory | 18.48 Mgat | Total Available Space | 31.28 Mgal | | | | Double-Shell Tank Inventory Space Designated for Specific Use Remaining Unatiocated Space | 18:48 Mgal
9:45 Mgal
3:25 Mgal | ⁽¹⁾ Was reduced in volume by -0.00 Mgal this month (Evaporator WVR) Note: Net change in total DST inventory since last month: +0.075 Mgal **WVPTOT** ⁽²⁾ Tank Space Reduced by Facility Generations and Saltwell Liquid pumping ^{(3) 241-}AY-101: A minumum liquid level is set to provide extra protection against any bottom uplifting of the tank's steel liner. Because of space availability, waste is stored in AY-102, the aging waste spare tank. In case of a leak the contents of AY-102 will be distributed to any other DST(s) having available space. Table B-2. Double Shell Tank Waste Inventory for July 31, 1998 | TANKS | INVENTORY | SOLIDS | TYPE | LEFT | |---------|-----------|--------|-------|------| | AN-101= | 158 | 33 | DN | 982 | | AN-102= | 1067 | 89 | CC | 73 | | AN-103= | 957 | 410 | DSS | 183 | | AN-104= | 1054 | 449 | DSSF | 86 | | AN-105= | 1127 | 489 | DSSF | 13 | | AN-106= | 39 | 17 | CC | 1101 | | AN-107= | 1049 | 247 | CC | 91 | | AP-101= | 1115 | 0 | DSSF | 25 | | AP-102= | 1093 | 0 | CP | 47 | | AP-103= | 26 | 1 | DN | 1114 | | AP-104= | 25 | 0 | DN | 1115 | | AP-105= | 767 | 89 | DSSF | 373 | | AP-106= | 389 | 0 | DN | 751 | | AP-107= | 25 | 0 | DN | 1115 | | AP-108= | 255 | 0 | DC | 885 | | AW-101 | 1124 | 306 | DSSF | 16 | | AW-102 | 546 | 40 | DN | 594 | | AW-103 | 512 | 347 | NCRW | 628 | | AW-104 | 1119 | 231 | DN | 21 | | AW-105 | 434 | 280 | NCRW | 700 | | AW-106 | 579 | 228 | CC | 56 | | AY-101= | 172 | 108 | DC | 808 | | AY-102= | 460 | 22 | DN | 526 | | AZ-101= | 838 | 47 | NÇAW | 142 | | AZ-102= | 888 | 104 | NCAW | 92 | | SY-101= | 1143 | 41 | CC | -3 | | SY-102= | 777 | 88 | DN/PT | 363 | | SY-103= | 746 | 362 | CC | 39 | | TOTAL= | 19484 | 4028 | | 1279 | | TOTAL DST SP | ACE AVAILAE | LE | |--------------|-------------|-------| | NON-AGING = | | 27360 | | AGING = | | 3920 | | TOTAL | | 31266 | | DST INVENTOR | Y CHANGE | |--------------|----------| | 06/98 TOTAL | 18427 | | 07/98 TOTAL | 18484 | | INCREASE | 57 | | AN-103= | 183 | |---------|-----| | AN-104= | 86 | | AN-105= | 13 | | AW-101= | 16 | | SY-101= | -3 | | SY-103= | 394 | | TATAL | 480 | | SEGREGATED SPACE (DC,CC,CP,AW) | | |--------------------------------|------| | AN-102= | 73 | | AN-106= | 1101 | | AN-107= | 91 | | AP-102= | 47 | | AP-108= | 885 | | AY-101= | 808 | | AZ-101= | 142 | | AZ-102= | 92 | | TOTAL# | 3239 | AN-101 (200E/DC)= AP-106 (200E/DN)= SY-102 (200W/DN)= TOTAL* | 02= | 921 - | |------------------|----------| | le. | 3239 06/ | | | 07/ | | WASTE RECEIVER S | PACE CH | | 01 (200E/DC)= | 982 | | 06 (200E/DN)= | 751 W | | 02 (200W/DN)= | 363 06/ | | | 2096 07/ | | USABLE SPACE | | |------------------|-------| | AP-101= | 25 | | AP-103= | 1114 | | AP-104= | 1115 | | AP-105= | 373 | | AP-107= | 1115 | | AW-102= | 594 | | AW-103= | 628 | | AW-104= | 21 | | AW-105= | 706 | | AW-106= | 561 | | AY-102= | 520 | | TOTAL | 6772 | | EVAP, OPERATIONS | -1140 | | SPARE SPACE | -2280 | | USABLE LEPTA | 3352 | | USABLE SPACE CHAI | NGE | |-------------------|------| | 06/98 TOTAL SPACE | 3361 | | 07/98 TOTAL SPACE | 3352 | | CHANGE* | | | WASTE RECEIVER SPACE | E CHANGE | |----------------------|----------| | | | | 06/98 TOTAL SPACE | 2139 | | 07/98 TOTAL SPACE | 2096 | | CHANGES | 43 | NOTE: Solids Adjusted to Most Current Available Data NOTE: All Volumes in Kilo-Gallons (Kgals) ### **Inventory Calculation by Waste Type:** | COMP | LEXED WASTE | |---------------|-------------| | AN-102= | 978 (CC) | | AN-106= | 22 (CC) | | AN-107= | 802 (CC) | | AP-108= | 255 (DC) | | AW-106= | 351 (CC) | | AY-101= | 64 (DC) | | SY-101= | 1102 (CC) | | SY-103= | 384 (CC) | | TOTAL DC/CC= | 395B | | TOTAL SOLIDS= | 1892 | | NCRW SOLIDS (PD) | | |------------------|------------| | AW-103= | 347 | | AW-105= | 280 | | TOTAL | 527 | | F | FP SOLIDS (PT) | |---------|----------------| | SY-102= | 88 | | TOTAL | 98 | | CONCENTRATED PHOSPHATE (CP) | | |-----------------------------|------| | 102-AP# | 1093 | | TOTAL | geo: | | DILUTE WASTE (DN) | | |-------------------|------| | AN-101= | 125 | | AP-103= | 25 | | AP-104= | 25 | | AP-106= | 389 | | AP-107= | 25 | | AW-102= | 506 | | AW-103= | 165 | | AW-104= | 888 | | AW-105= | 154 | | AY-102= | 438 | | SY-102= | 689 | | TOTAL DN= | 3429 | | TOTAL SOLIDS= | 327 | | NCAW (AGING WASTE)
(@ 5M Na) | | |---------------------------------|--| | | | | AZ-102= | 434 | | TOTAL @ - SM New | 1225 | | TOTAL DN# | 350 | | TOTAL SOLIDS# | ************************************** | | DSS/DSSF | | | |-----------------|------|--| | AN-103= | 547 | | | AN-104≖ | 605 | | | AN-105≔ | 638 | | | AP-101= | 1115 | | | AP-105= | 678 | | | AW-101= | 818 | | | TOTAL DSS/DSSP# | 4401 | | | TOTAL SOLIDS# | 1743 | | | GRAND TOTAL | Ş | |---------------|-------| | NCRW SOLIDS= | 627 | | DST SOLIDS= | 3162 | | PFP SOLIDS≃ | 88 | | AGING SOLIDS= | 151 | | CC= | 3639 | | DC= | 319 | | CP= | 1093 | | NCAW= | 1575 | | DSS/DSSF= | 4401 | | DILUTE= | 3429 | | TOTAL= | 19484 | NOTE: Tank AW-106 (evaporator receiver) has Concentrated Complexed (CC) waste in it and will transferred to Tank 106-AN. inv0798 Table B-2. Double Shell Tank Waste Inventory for July 31, 1998 | TANK AN-103 AN-104 | WASTE TYPE
DSS | AVAILABLE | SPAC | |---------------------------|--
---|--| | | DSS | | | | AN-104 | 233 | 183 | KGAL | | | DSSF | 86 | KGAL | | AN-105 | DSSF | 13 | KGAL | | , AW-101 | DSSF | 16 | KGAL | | ` SY-101 | CC | -3 | KGAL | | SY-103 | CC | ent agt and a frage and agt | KGAL | | | TOTA | Tim 480 | KGAI | | , | AVAILABLE TANK SPACE= | 12796 | KGAL | | | | والمراقب والمراوي | KGAL | | | 30.01.442.02.000110.00 | | | | TANK | WASTE TYPE | · · · · · · · · · · · · · · · · · · · | | | _ | - - | | KGAL | | | | + - | | | | | | KGAL | | . — | | | KGAL | | AZ-102 | >00000000000000000000000000000000000000 | \$\dagge\dagg | KGAL | | MIN | US SEGREGATED SPACE: | -3239 | KGAL
KGAL | | TANK | WASTE TYPE | AVAILABLE | SPAC | | AN-101 | DN | 982 | KGAL | | AP-101 | DSSF | 25 | KGAL | | AP-103 | DN | 1114 | KGAL | | AP-104 | ÐN | 1115 | KGAL | | AP-105 | DSSF | 373 | KGAL | | AP-106 | DN | 751 | KGAL | | AP-107 | DN | 1115 | KGAL | | AW-102 | DN | 594 | KGAL | | AW-103 | NCRW | 628 | KGAL | | AW-104 | DN | 21 | KGAL | | AW-105 | NCRW | 706 | KGAL | | AW-106 | CC | 561 | KGAL | | AY-102 | DN | 520 | KGAL | | <u>laakkanikkan</u> aan : | DN
L e usable tank space = | baaaaaaaaaaaaaaaa | KGAL | | | ······································ | | | | | | -1140 | NGAL | | | | -2280 | KGAL | | | TANK AN-102 AN-106 AN-107 AP-102 AP-108 AY-101 AZ-101 AZ-102 PACE AFTER MINI ER SEGREGA TANK AN-101 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AW-102 AW-103 AW-104 AW-105 AY-102 EX-102 EX-102 EX-102 EX-102 EX-102 EX-103 | AVAILABLE TANK SPACE= MINUS WATCH LIST SPACE= TER WATCH LIST SPACE DEDUCTIONS TANK WASTE TYPE AN-102 CC AN-106 CC AN-107 CC AP-102 CP AP-108 DC AY-101 DC AZ-101 AW AZ-102 AW TOTA PACE AFTER WATCH LIST DEDUCTIONS MINUS SEGREGATED SPACE= ER SEGREGATED SPACE DEDUCTIONS TANK WASTE TYPE AN-101 DN AP-101 DSSF AP-103 DN AP-104 DN AP-105 DSSF AP-106 DN AP-107 DN AW-102 DN AW-102 DN AW-103 NCRW AW-104 DN AW-105 NCRW AW-104 DN AW-105 NCRW AW-106 CC AY-102 DN SY-102 DN FALAVAR ARE F USABLE TANK SPACE= | AVAILABLE TANK SPACE= MINUS WATCH LIST SPACE= -689 MAN-102 CC 73 AN-106 CC 1101 AN-107 CC 91 AP-102 CP 47 AP-108 DC 808 AZ-101 AW 142 AZ-102 AW 92 TOTAL= 3239 BR SEGREGATED SPACE DEDUCTIONS= 12107 MINUS SEGREGATED SPACE= -3239 BR SEGREGATED SPACE DEDUCTIONS= 12107 AP-101 DN 982 AP-101 DN 982 AP-101 DN 982 AP-103 DN 1114 AP-104 DN 1115 AP-105 DSSF 373 AP-106 DN 751 AP-107 DN 1115 AW-102 DN 594 AW-103 NCRW 628 AW-104 DN 21 AW-105 NCRW 706 AW-106 CC 561 AW-102 DN 520 SY-102 DN 520 SY-102 DN 363 FALAVAILABLE USABLE TANK SPACE= 8868 E: | FIGURE B-1. TOTAL DOUBLE-SHELL TANK INVENTORY This page intentionally left blank #### APPENDIX C 14 # TANK AND EQUIPMENT CODE AND STATUS DEFINITIONS ### C. TANK AND EQUIPMENT CODE/STATUS DEFINITIONS July 31, 1998 #### 1. TANK STATUS CODES #### WASTE TYPE (also see definitions, section 3) **AGING** Aging Waste (Neutralized Current Acid Waste [NCAW]) Complexant Concentrate Waste CC CP Concentrated Phosphate Waste • 4 Dilute Complexed Waste DC Dilute Non-Complexed Waste DN Double-Shell Slurry DSS Double-Shell Slurry Feed DSSF NCPLX Non-Complexed Waste PD/PN Plutonium-Uranium Extraction (PUREX) Neutralized Cladding Removal Waste (NCRW), transuranic waste (TRU) PT Plutonium Finishing Plant (PFP) TRU Solids #### TANK USE (DOUBLE-SHELL TANKS ONLY) CWHT Concentrated Waste Holding Tank DRCVR Dilute Receiver Tank EVFD Evaporate Feed Tank SRCVR Slurry Receiver Tank #### 2. SOLID AND LIQUID VOLUME DETERMINATION METHODS - F Food Instrument Company (FIC) Automatic Surface Level Gauge - E ENRAF Surface Level Gauge (being installed to replace FICs) - M Manual Tape Surface Level Gauge - P Photo Evaluation - S Sludge Level Measurement Device #### 3 DEFINITIONS #### **WASTE TANKS - GENERAL** #### Waste Tank Safety Issue A potentially unsafe condition in the handling of waste material in underground storage tanks that requires corrective action to reduce or eliminate the unsafe condition. #### Watch List Tank An underground storage tank containing waste that requires special safety precautions because it may have a serious potential for release of high level radioactive waste because of uncontrolled increases in temperature or pressure. Special restrictions have been placed on these tanks by "Safety Measures for Waste Tanks at Hanford Nuclear Reservation," Section 3137 of the *National Defense Authorization Act for Fiscal Year 1991*, November 5, 1990, Public Law 101-510, (also known as the Wyden Amendment). #### Characterization Characterization is understanding the Hanford tank waste chemical, physical, and radiological properties to the extent necessary to insure safe storage and interim operation, and ultimate disposition of the waste. #### **WASTE TYPES** #### Aging Waste (AGING) High level, first cycle solvent extraction waste from the PUREX plant (NCAW) #### Concentrated Complexant (CC) Concentrated product from the evaporation of dilute complexed waste. #### Concentrated Phosphate Waste (CP) Waste originating from the decontamination of the N Reactor in the 100 N Area. Concentration of this waste produces concentrated phosphate waste. #### Dilute Complexed Waste (DC) Characterized by a high content of organic carbon including organic complexants:
ethylenediaminetetra-acetic acid (EDTA), citric acid, and hydroxyethyl-ethylenediaminetriacetic acid (HEDTA), being the major complexants used. Main sources of DC waste in the DST system are saltwell liquid inventory (from SSTs). #### Dilute Non-Complexed Waste (DN) Low activity liquid waste originating from T and S Plants, the 300 and 400 Areas, PUREX facility (decladding supernatant and miscellaneous wastes), 100 N Area (sulfate waste), B Plant, saltwells, and PFP (supernate). #### Double-Shell Slurry (DSS) Waste that exceeds the sodium aluminate saturation boundary in the evaporator without exceeding receiver tank composition limits. For reporting purposes, DSS is considered a solid. #### Double-Shell Slurry Feed (DSSF) Waste concentrated just before reaching the sodium aluminate saturation boundary in the evaporator without exceeding receiver tank composition limits. This form is not as concentrated as DSS. #### Non-complexed (NCPLX) General waste term applied to all Hanford Site (NCPLX) liquors not identified as complexed. #### PUREX Decladding (PD) PUREX Neutralized Cladding Removal Waste (NCRW) is the solids portion of the PUREX plant neutralized cladding removal waste stream; received in Tank Farms as a slurry. NCRW solids are classified as transuranic (TRU) waste. #### PFP TRU Solids (PT) TRU solids fraction from PFP Plant operations. #### Drainable Interstitial Liquid (DIL) Interstitial liquid that is not held in place by capillary forces, and will therefore migrate or move by gravity. (See also Section 4) #### Supernate The liquid above the solids in waste storage tanks. (See also Section 4) #### **Ferrocvanide** A compound of iron and cyanide commonly expressed as FeCN. The actual formula for the ferrocyanide anion is $[Fe(CN)_{\epsilon}]^{-1}$. #### INTERIM STABILIZATION (Single-Shell Tanks only) #### Interim Stabilized (IS) A tank which contains less than 50 Kgallons of drainable interstitial liquid and less than 5 Kgallons of supernatant liquid. If the tank was jet pumped to achieve interim stabilization, then the jet pump flow must also have been at or below 0.05 gpm before interim stabilization criteria is met. #### Jet Pump The jet pump system includes 1) a jet assembly with foot valve mounted to the base of two pipes that extend from the top of the well to near the bottom of the well casing inside the saltwell screen, 2) a centrifugal pump to supply power fluid to the down-hole jet assembly, 3) flexible or rigid transfer jumpers, 4) a flush line, and 5) a flowmeter. The jumpers contain piping, valves, and pressure and limit switches. The centrifugal pump and jet assembly are needed to pump the interstitial liquid from the saltwell screen into the pump pit, nominally a 40-foot elevation rise. The power fluid passes through a nozzle in the jet assembly and acts to convert fluid pressure head to velocity head, thereby reducing the pressure in the jet assembly chamber. The reduction in pressure allows the interstitial liquid to enter the jet assembly chamber and mix with the power fluid. Velocity head is converted to pressure head above the nozzle, lifting power fluid, and interstitial liquid to the pump pit. Pumping rates vary from 0.05 gallons to about 4 gpm. #### Saltwell Screen The saltwell system is a 10-inch diameter saltwell casing consisting of a stainless steel saltwell screen welded to a Schedule 40 carbon steel pipe. The casing and screen are to be inserted into the 12-inch tank riser located in the pump pit. The stainless steel screen portion of the system will extend through the tank waste to near the bottom of the tank. The saltwell screen portion of the casing is an approximately 10-foot length of 300 Series, 10-inch diameter, stainless steel pipe with screen openings (slots) of 0.05 inches. #### **Emergency Pumping Trailer** A 45-foot tractor-type trailer is equipped to provide storage space and service facilities for emergency pumping equipment: this consists of two dedicated jet pump jumpers and two jet pumps, piping and dip tubes for each, two submersible pumps and attached piping, and a skid-mounted Weight Factor Instrument Enclosure (WFIE) with an air compressor and electronic recording instruments. The skid also contains a power control station for the pumps, pump pit leak detection, and instrumentation. A rack for over 100 feet of overground double-contained piping is also in the trailer. #### INTRUSION PREVENTION (ISOLATION) Single-Shell Tanks only #### Partially Interim Isolated (PI) The administrative designation reflecting the completion of the physical effort required for Interim Isolation except for isolation of risers and piping that is required for jet pumping or for other methods of stabilization. #### Interim Isolated (II) The administrative designation reflecting the completion of the physical effort required to minimize the addition of liquids into an inactive storage tank, process vault, sump, catch tank, or diversion box. In June 1993, Interim Isolation was replaced by Intrusion Prevention. #### Intrusion Prevention (IP) Intrusion Prevention is the administrative designation reflecting the completion of the physical effort required to minimize the addition of liquids into an inactive storage tank, process vault, sump, catch tank, or diversion box. Under no circumstances are electrical or instrumentation devices disconnected or disabled during the intrusion prevention process (with the exception of the electrical pump). #### Controlled, Clean, and Stable (CCS) Controlled, Clean, and Stable reflects the completion of several objectives: "Controlled" - provide remote monitoring for required instrumentation and implement controls required in the TWRS Authorization Basis; "Clean" - remove surface soil contamination and downpost the Tank Farms to RBA/URMA/RA radiological control status, remove abandoned equipment, and place reusuable equipment in compliant storage; and "Stable" - remove pumpable liquids from the SSTs and IMUSTs and isolate the tanks. #### TANK INTEGRITY #### Sound The integrity classification of a waste storage tank for which surveillance data indicate no loss of liquid attributed to a breach of integrity. #### Assumed Leaker The integrity classification of a waste storage tank for which surveillance data indicate a loss of liquid attributed to a breach of integrity. #### Assumed Re-Leaker A condition that exists after a tank has been declared as an "assumed leaker" and then the surveillance data indicates a new loss of liquid attributed to a breach of integrity. #### TANK INVESTIGATION #### Intrusion A term used to describe the infiltration of liquid into a waste tank. #### SURVEILLANCE INSTRUMENTATION #### Drywells Drywells are vertical boreholes with 6-inch (internal diameter) carbon steel casings positioned radially around SSTs. These wells range between 50 and 250 feet in depth, and are monitored between the range of 50 to 150 feet. The wells are sealed when not in use. They are called drywells because they do not penetrate to the water table and are therefore usually "dry." There are 759 drywells. Monitoring is done by gamma radiation or neutron-moisture sensors to obtain scan profiles of radiation or moisture in the soil as a function of well depth, which could be indicative of tank leakage. Two single-shell tanks (C-105 and C-106) are currently monitored monthly by gamma radiation sensors. The remaining drywells are monitored on request by gamma radiation sensors. Monitoring by neutron-moisture sensors is done only on request. #### Laterals Laterals are horizontal drywells positioned under single-shell waste storage tanks to detect radionuclides in the soil which could be indicative of tank leakage. These drywells can be monitored by radiation detection probes. Laterals are 4-inch inside diameter steel pipes located 8 to 10 feet below the tank's concrete base. There are three laterals per tank. Laterals are located only in A and SX farms. There are currently no functioning laterals and no plan to prepare them for use. #### Surface Levels The surface level measurements in all waste storage tanks are monitored by manual or automatic conductivity probes, and recorded and transmitted or entered into the Computer Automated Surveillance System (CASS). #### **Automatic FIC** An automatic waste surface level measurement device is manufactured by the Food Instrument Company (FIC). The instrument consists of a conductivity electrode (plummet) connected to a calibrated steel tape, a steel tape reel housing and a controller that automatically raises and lowers the plummet to obtain a waste surface level reading. The controller can provide a digital display of the data and also transmit the reading to the CASS. Some tanks have gauges connected to CASS and others are read manually. FICs are being replaced by ENRAF detectors (see below). #### **ENRAF 854 ATG Level Detector** FICs and some manual tapes are in the process of being replaced by the ENRAF ATG 854 level detector. The ENRAF gauge, fabricated by ENRAF Incorporated, determines waste level by detecting variations in the weight of a displacer suspended in the tank waste. The displacer is connected to a wire wound onto a precision measuring drum. A level causes a change in the weight of the displacer which will be detected by the force transducer. Electronics within the gauge causes the servo motor to adjust the position of the displacer and compute the tank level based on the new position of the displacer drum. The gauge displays the level in decimal inches. The first few ENRAFs that received remote reading capability transmit liquid level data via analog output to the Tank Monitor and Control System (TMACS). The remaining ENRAFs and future installations will transmit digital level data to TMACS via an ENRAF Computer Interface Unit (CIU). The CIU allows fully remote communication with the gauge, minimizing tank farm entry. #### **Annulus** The annulus is the space between the inner and outer
shells on DSTs only. Drain channels in the insulating and/or supporting concrete carry any leakage to the annulus space where conductivity probes are installed. Alarms from the annunciators are received by CASS. Continuous Air Monitoring (CAM) alarms are also located in the annulus. The annulus conductivity probes and radiation detectors are the primary means of leak detection for all DSTs. #### Liquid Observation Well (LOW) In-tank liquid observation wells are used for monitoring the interstitial liquid level (ILL) in single-shell waste storage tanks. The wells are usually constructed of fiberglass or TEFZEL-reinforced epoxy-polyester resin (TEFZEL, a trademark of E. I. du Pont de Nemours & Company). There are a few LOWs constructed of steel. LOWs are sized to extend to within 1 inch of the bottom of the waste tank, are sealed at their bottom ends and have a nominal outside diameter of 3.5 inches. Two probes are used to monitor changes in the ILL; gamma and neutron, which can indicate intrusions or leakage by increases or decreases in the ILL. There are 65 LOWs (64 are in operation) installed in SSTs that contain or are capable of containing greater than 50 Kgallons of drainable interstitial liquid, and in two DSTs only. The LOWs installed in two DSTs, (SY-102 and AW-103 tanks), are used for special, rather than routine, surveillance purposes only. #### Thermocouple (TC) A thermocouple is a thermoelectric device used to measure temperature. More than one thermocouple on a device (probe) is called a thermocouple tree. In DSTs there may be one or more thermocouple trees in risers in the primary tank. In addition, in DSTs only, there are thermocouple elements installed in the insulating concrete, the lower primary tank knuckle, the secondary tank concrete foundation, and in the outer structural concrete. These monitor temperature gradients within the concrete walls, bottom of the tank, and the domes. In SSTs, one or more thermocouples may be installed directly in a tank, although some SSTs do not have any trees installed. A single thermocouple (probe) may be installed in a riser, or lowered down an existing riser or LOW. There are also four thermocouple laterals beneath Tank 105-A in which temperature readings are taken in 34 thermocouples. #### In-tank Photographs and Videos In-tank photographs and videos may be taken to aid in resolving in-tank measurement anomalies and determine tank integrity. Photographs and videos help determine sludge and liquid levels by visual examination. #### TERMS/ACRONYMS CASS Computer Automated Surveillance System CCS Controlled, Clean and Stable (tank farms) II Interim Isolated #### HNF-EP-0182-124 Intrusion Prevention Completed IS Interim Stabilized MT/FIC/ENRAF Manual Tape, Food Instrument Corporation, ENRAF Corporation (surface level measurement devices) OSD Operating Specifications Document PI Partial Interim Isolated SAR Safety Analysis Reports SHMS Standard Hydrogen Monitoring System TMACS Tank Monitor and Control System TPA Hanford Federal Facility Consent and Compliance Order, "Washington State Department of Ecology, U. S. Environmental Protection Agency, and U. S. Department of Energy," Fourth Amendment, 1994 (Tri-Party Agreement) USO Unreviewed Safety Question Wyden Amendment "Safety Measures for Waste Tanks at Hanford Nuclear Reservation," Section 3137 of the National Defense Authorization Act for Fiscal Year 1991, November 5, 1990, Public Law 101-510. ### 4. <u>INVENTORY AND STATUS BY TANK - VOLUME CALCULATIONS AND DEFINITIONS FOR TABLE E-6 (SINGLE-SHELL TANKS)</u> | COLUMN HEADING | VOLUME CALCULATIONS/DEFINITIONS | |----------------------------------|---| | Total Waste | Solids volume plus Supernatant liquid. Solids include sludge and saltcake (see definitions below) | | Supernate Liquid | Drainable Liquid Remaining minus Drainable Interstitial. Supernate is the clear liquid floating on the surface of the waste. Supernate is usually derived by subtracting the solids level measurement from the liquid level measurement. In some cases, the supernatant volume includes floating solid crusts because their volume cannot be measured. In-tank photographs or videos are useful in estimating the liquid volumes; the area of solids covered and the average depth can be estimated. | | Drainable Interstitial
Liquid | Drainable Liquid Remaining minus Supernate. Drainable interstitial liquid is calculated based on the saltcake and sludge volumes, using average porosity values or actual data for each tank, when available. Interstitial liquid is liquid that fills the interstitial spaces of the solids waste. Drainable interstitial liquid is calculated based on the saltcake and sludge volumes in the tank. The sum of the interstitial liquid contained in saltcake and sludge is the initial volume of drainable interstitial liquid. The volume reported as Drainable Interstitial Liquid is the initial volume of drainable interstitial liquid minus interstitial liquid removed by pumping. | #### HNF-EP-0182-124 | COLUMN HEADING | VOLUME CALCULATIONS/DEFINITIONS | |--|---| | Pumped This Month | Net total gallons of liquid pumped from the tank during the month. If supernate is present, pump production is first subtracted from the supernatant volume. The remainder is then subtracted from the drainable interstitial liquid volume. The total pumped volume is subtracted from drainable liquid remaining and pumpable liquid remaining. Pump production takes into account the amount of water added to the tank during the month (if any). | | Total Pumped | Cumulative net total gallons of liquid pump from 1979 to date. | | Drainable Liquid
Remaining | Supernate plus Drainable Interstitial. (See Supernatant Liquid and Drainable Interstitial Liquid above for definitions). The total Drainable Liquid Remaining is the sum of drainable interstitial liquid and supernate minus total gallons pumped. | | Pumpable Liquid
Remaining | Drainable Liquid Remaining minus undrainable heel volume. (Dish bottom tanks have a "heel" where liquids can collect: flat bottom tanks do not). (See Drainable Liquid Remaining and Pumped this Month for definitions). Not all drainable interstitial liquid is pumpable. It is assumed that drainable interstitial liquid on top of the undrainable heel in sludge or saltcake, is not jet pumpable. Therefore, pumpable interstitial liquid is the initial volume of drainable interstitial liquid minus the amount of interstitial liquid on top of the heel. The volume shown as Pumpable Liquid Remaining is the sum of pumpable interstitial liquid and supernate minus total gallons pumped. | | Sludge | Solids formed during sodium hydroxide additions to waste. Sludge usually was in the form of suspended solids when the waste was originally received in the tank from the waste generator. In-tank photographs or videos may be used to estimate the volume. | | Saltcake | Results from crystallization and precipitation after concentration of liquid waste, usually in an evaporator. If saltcake is layered over sludge, it is only possible to measure total solids volume. In-tank photographs or videos may be used to estimate the saltcake volume. | | Solids Volume Update | Indicates the latest update of any change in the solids volume. | | Solids Update Source -
See Footnote | Indicates the source or basis of the latest solids volume update. | | Last In-tank Photo | Date of last in-tank photographs taken. | | Last In-tank Video | Date of last in-tank video taken. | | See Footnotes for These
Changes | Indicates any change made the previous month. A footnote explanation for the change follows the Inventory and Status by Tank section (Table E-6). | #### APPENDIX D •• [## TANK FARM CONFIGURATION, STATUS, AND FACILITY CHARTS D-2 FIGURE D-1. HIGH-LEVEL WASTE TANK CONFIGURATION FIGURE D-2. DOUBLE-SHELL TANK INSTRUMENTATION CONFIGURATION FIGURE D-3. SINGLE-SHELL TANK INSTRUMENTATION CONFIGURATION 44 # THE HANFORD TANK FARM FACILITY CHARTS (colored foldouts) ARE ONLY BEING INCLUDED IN THIS REPORT ON A QUARTERLY BASIS (i. e., months ending March 31, June 30, September 30, December 31) NOTE: COPIES OF THE FACILITY CHARTS CAN BE OBTAINED FROM DENNIS BRUNSON, MULTI-MEDIA SERVICES, 375-6820, K1-03 ALMOST ANY SIZE IS AVAILABLE, AND CAN BE LAMINATED. TCPN required This page intentionally left blank #### APPENDIX E MONTHLY SUMMARY TANK USE SUMMARY PUMPING RECORD, LIQUID STATUS AND PUMPABLE LIQUID REMAINING IN TANK FARMS INVENTORY SUMMARY BY TANK FARM INVENTORY AND STATUS BY TANK #### E-2 ### TABLE E-1. MONTHLY SUMMARY TANK STATUS July 31, 1998 | | 200 | 200 | |
-------------------------------|-----------|------------------|--------------| | | EAST AREA | <u>WEST AREA</u> | <u>TOTAL</u> | | IN SERVICE | 25 | 03 | 28 (1) | | OUT OF SERVICE | 66 | 83 | 149 | | SOUND | 59 | 51 | 110 | | ASSUMED LEAKER | 32 | 35 | 67 | | INTERIM STABILIZED | 60 | 59 | 119 (2) | | ISOLATED | | | | | PARTIAL INTERIM | 11 | 30 | 41 | | INTRUSION PREVENTION COMPLETE | 55 | 53 | 108 | | CONTROLLED, CLEAN, AND STABLE | 12 | 24 | 36_ | | | | WASTE VO | LUMES (Kgallo | ns) | | | | |---------|------------------------------------|-----------|---------------|-------|--------------|--------------|-------| | | | 200 | 200 | | SST | DST | | | | | EAST AREA | WEST AREA | TOTAL | TANKS | TANKS | TOTAL | | SUPERNA | <u>ATANT</u> | | | | | | | | AGING | Aging waste | 1575 | 0 | 1575 | 0 | 1575 | 1575 | | CC | Complexant concentrate waste | 2156 | 1482 | 3638 | 3 | 3635 | 3638 | | CP | Concentrated phosphate waste | 1093 | 0 | 1093 | 0 | 1093 | 1093 | | DC | Dilute complexed waste | 826 | 1 | 827 | 2 | 825 | 827 | | DN | Dilute non-complexed waste | 1915 | 0 | 1915 | 0 | 1915 | 1915 | | DN/PD | Dilute non-complex/PUREX TRU solid | 344 | 0 | 344 | 0 | 344 | 344 | | DN/PT | Dilute non-complex/PFP TRU solids | 0 | 689 | 689 | 0 | 689 | 689 | | NCPLX | Non-complexed waste | 207 | 289 | 496 | 496 | 0 | 496 | | DSSF | Double-shell slurry feed | 4410 | 48 | 4458 | 57 | 4401 | 4458 | | TOTAL | SUPERNATANT | 12526 | 2509 | 15035 | 558 | 14477 | 15035 | | SOLIDS | | 5 | | | | | | | Double | e-shell sturry | 410 | 0 | 410 | 0 | 410 | 410 | | Sludge | | 9147 | 6225 | 15372 | 11854 | 3518 | 15372 | | Saltca | ike | 6265 | 16740 | 23005 | 22926 | 79 | 23005 | | TOTA | L SOLIDS | 15822 | 22965 | 38787 | 34780 | 4007 | 38787 | | ТО | TAL WASTE | 28348 | 25474 | 53822 | 35338 | 18484 | 53822 | | AVAILAE | BLE SPACE IN TANKS | 12042 | 757 | 12799 | Ö | 12799 | 12799 | | DRAINAE | BLE INTERSTITIAL | 2229 | 4632 | 6861 | 6582 | 279 | 6861 | | DRAINA | BLE LIQUID REMAINING | 14756 | 7128 | 21884 | 7128 | 14756 | 21884 | ⁽¹⁾ Includes six double-shell tanks on Hydrogen Watch List not currently allowed to receive waste, AN-103, AN-104, AN-105, AW-101, SY-101, and SY-103. ⁽²⁾ Includes one tank (8-202) which does not meet current established supernatant and interstitial liquid stabilization criteria. TABLE E-2. TANK USE SUMMARY July 31, 1998 | | | | • • | | ISOLATED TAI | | | | |-----------------------|-----------------------------------|-------|-------------------|--------------------|--------------------------------------|------------------------------------|-------------------------------|---| | TANK
F <u>ARMS</u> | TANKS RECEIVING
WASTE TRANSERS | SOUND | ASSUMED
LEAKER | PARTIAL
INTERIM | INTRUSION
PREVENTION
COMPLETED | CONTROLLED
CLEAN, AND
STABLE | INTERIM
TABILIZED
TANKS | | | EAST | | | | | | | | | | Α | 0 | 3 | 3 | 2 | 4 | 0 | 5 | | | AN | 7 (1) | 7 | 0 | 0 | 0 | | 0 | | | AP | 8 | 8 | 0 | 0 | 0 | | 0 | | | AW | 6 (1) | 6 | 0 | 0 | 0 | | 0 | | | AX | 0 | 2 | 2 | 1 | 3 | | 3 | | | AY | 2 | 2 | 0 | 0 | 0 | | 0 | | | AZ | 2 | 2 | 0 | 0 | 0 | <i>:</i> : | 0 | | | В | 0 | 6 | 10 | 0 | 16 | ri- | 16 | (2) | | BX | 0 | 7 | 5 | 0 | 12 | 12 | 12 | | | BY | 0 | 7 | 5 | 5 | 7 | | 10 | | | С | 0 | 9 | 7 | 3 | 13 | | 14 | | | Total | 25 | 59 | 32 | 11 | 55 | 12 | 60 | | | WEST | _ | | _ | | _ | | | | | S | 0 | 11 | 1 | 10 | 2 | | 4 | | | SX | 0 | 5 | 10 | 6 | 9 | | 9 | | | SY | 3 (1) | 3 | 0 | 0 | 0 | | 0 | | | T | 0 | 9 | 7 | 5 | 11 | | 14 | | | TX | 0 | 10 | 8 | 0 | 18 | 18 | 18 | | | TY | 0 | 1 | 5 | 0 | 6 | 6 | 6 | | | U | 0 | 12 | 4 | 9 | 7 | | 8 | | | Total | 3 | 51 | 35 | 30 | 53 | 24 | 59 | | | | | | | | | | | 404000000000000000000000000000000000000 | | TOTAL : | 28 | 110 | 67 | 41 | 108 | 36 | 119 | | ⁽¹⁾ Six Double-Shell Tanks on the Hydrogen Tank Watch List are not currently receiving waste transfers (AN-103, 104, 105, AW-101, SY-101 and 103). ⁽²⁾ Includes tank 8-202 which no longer meets established supernatant interstitial liquid stabilization criteria. ## TABLE E-3. PUMPING RECORD, LIQUID STATUS AND PUMPABLE LIQUID REMAINING IN TANK FARMS July 31, 1998 | | | | Waste Ve | olumes (Kgallons) | | | | | |--------------|------------|-----------|----------------------------|-------------------|---------------------------|---------------------|--------------------|--| | TANK | PUMPED | PUMPED FY | CUMULATIVE
TOTAL PUMPED | SUPERNATANT | DRAINABLE
INTERSTITIAL | DRAINABLE
LIQUID | PUMPABLE
LIQUID | | | <u>FARMS</u> | THIS MONTH | | 1979 TO DATE | LIQUID | REMAINING | REMAINING | REMAINING | | | EAST | | | | | | | | | | A | 0.0 | 0.0 | 150.5 | 9 | 492 | 501 | 441 | | | AN | N/A | N/A | N/A | 3717 | 127 | 3844 | N/A | | | AP | N/A | N/A | N/A | 3605 | 3 | 3608 | N/A | | | AW | N/A | N/A | N/A | 2907 | 139 | 3046 | N/A | | | AX | 0.0 | 0.0 | 13.0 | 3 | 409 | 412 | 344 | | | AY | N/A | N/A | N/A | 502 | 5 | 507 : | N/A | | | ΑZ | N/A | N/A | N/A | 1575 | 5 | 1580 | N/A | | | В | 0.0 | 0.0 | 0.0 | 15 | 164 | 179 | 80 | | | BX | N/A | 0.0 | 200.2 | 21 | 107 | 129 | N/A | | | BY | 0.0 | 0.0 | 1567.8 | 0 | 588 | 588 | 431 | | | С | 0.0 | 0.0 | 103.0 | 172 | 190 | 362 | 272 | | | Total | 0.0 | 0,0 | 2034.5 | 12526 | 2229 | 14756 | 1568 | | | WEST | | | | | | | | | | S | 0.0 | 0.0 | 853.6 | 71 | 1303 | 1361 | 1138 | | | SX | 3.3 | 4.1 | 117.3 | 63 | 1503 | 1566 | 1441 | | | SY | N/A | N/A | N/A | 2171 | 0 | 2171 | N/A | | | Т | 10.1 | 13.0 | 196.5 | 28 | 188 | 216 | 152 | | | TΧ | N/A | 0.0 | 1205.7 | 5 | 250 | 255 | N/A | | | TY | N/A | 0.0 | 29.9 | 3 | 31 | 34 | N/A | | | U | 0.0 | 0.0 | 0.0 | 168 | 1357 | 1525 | 1377 | | | Total | 13.4 | 17,1 | 2403.0 | 2509 | 4632 | 7128 | 4108 | | | TOTAL | 13.4 | 17.1 | 4437.5 | 15035 | 6861 (1) | 21884 | 5676 (1) | | ⁽¹⁾ Volume based on 21% (sludge waste) and 50% (saltcake waste) liquid in solid (porosity) value, per WHC-SD-W236A-ES-012, Rev .1, dated May 21, 1996, a re-evaluation of the non-stabilized tanks. N/A = Not applicable for Double-Shell Tank Farms, and Single-Shell Tank Farms which have been declared Controlled, Clean and Stable (BX, TX, TY). TABLE E-4. INVENTORY SUMMARY BY TANK FARM July 31, 1998 | | | | | | SUPERN | ATANT | LIQUI | D VOL | UMES | (Kgalloi | ns) | | | SOLID | S VOLUN | 1E | |-------|-------|-------|-------|------|-----------|-----------|-------|-------|-------------|----------|-------|-------|-----|--------|---------|-------| | TANK | TOTAL | AVAIL | | | | | | | | | | | | | SALT | | | FARM | WASTE | SPACE | AGING | CC | <u>CP</u> | <u>DC</u> | DN | DN/PD | DN/PT | DSSE | NCPLX | TOTAL | DSS | SLUDGE | CAKE | TOTAL | | EAST | | | | | | | | | | | | | | | | | | A | 1537 | o | o | o | 0 | o | 0 | 0 | 0 | 9 | О | 9 | o | 556 | 972 | 1528 | | AN | 5451 | 2529 | 0 | 1802 | 0 | 0 | 125 | 0 | 0 | 1790 | o | 3717 | 410 | 1324 | 0 | 1734 | | AP | 3695 | 5425 | 0 | 0 | 1093 | 255 | 464 | 0 | o | 1793 | 0 | 3605 | 0 | 90 | 0 | 90 | | AW | 4314 | 2526 | Ö | 351 | . 0 | 506 | 888 | 344 | 0 | 818 | o | 2907 | 0 | 1332 | 75 | 1407 | | AX | 906 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | o | 19 | 884 | 903 | | AY | 632 | 1328 | ٥ | 0 | 0 | 64 | 438 | 0 | 0 | 0 | 0 | 502 | 0 | 130 | 0 | 130 | | AZ | 1726 | 234 | 1575 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o | 1575 | 0 | 151 | 0 | 151 | | 8 | 2057 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 15 | 0 | 1697 | 345 | 2042 | | BX | 1493 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21 | 21 | 0 | 1351 | 121 | 1472 | | BY | 4561 | 0 | ۰ ا | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o | 0 | 0 | 693 | 3868 | 4561 | | С | 1976 | o | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 171 | 172 | 0 | 1804 | 0 | 1804 | | Total | 28348 | 12042 | 1575 | 2158 | 1093 | 826 | 1915 | 344 | 0 | 4410 | 207 | 12526 | 410 | 9147 | 8285 | 15822 | | WEST | | | | | | | | | | | | | | | | | | S | 5300 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 54 | 71 | 0 | 1166 | 4063 | 5229 | | sx | 4419 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 62 | 63 | 0 | 1254 | 3102 | 4350 | | SY | 2666 | 757 | 0 | 1482 | 0 | 0 | 0 | 0 | 689 | 0 | 0 | 2171 | 0 | 491 | . 4 | 49 | | Т | 1892 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 28 | 0 | 1864 | 0 | 1864 | | TX | 7009 | 0 | 0 | 0 | 0 | O | 0 | 0 | 0 | 0 | 5 | 5 | 0 | 241 | 6763 | 700 | | TY | 638 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 571 | 64 | 63 | | U | 3550 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 31 | 137 | 168 | ٥ | 638 | 2744 | 338 | | Total | 25474 | 757 | 0 | 1482 | 0 | 1 | 0 | 0 | 689 | 48 | 289 | 2509 | 0 | 6225 | 16740 | 2298 | | TOTAL | 53822 | 12799 | 1575 | 3638 | 1093 | 827 | 1915 | 344 | 689 | 4458 | 496 | 15035 | 410 | 15372 | 23005 | 3878 | HNF-EP-0182-124 | | | TANK : | STATUS | | | | LIQUID VOLUME | | | | | DLIDS VOL | .UME | VOLU | ME DETERA | MINATION | PHOTOS/ | VIDEOS | | |------------------|--------------|-------------------|-------------|------------------------------------|-----------|---------------------------|--------------------------------------|---|--|---|---------------|-----------|------|--|----------------------------|----------------------------|--------------------------|--------------------------|--| | TANK | WAST
MATL | TANK
INTEGRITY | TANK
USE | EQUIVA-
LENT
WASTE
INCHES | | AVAIL.
SPACE
(Kgel) | SUPER-
NATANT
LIQUID
(Kgal) | DRAIN-
ABLE
INTER-
STIT.
(Kgai) | DRAIN-
ABLE
LIQUID
REMAIN
(Kgal) | PUMP-
ABLE
LIQUID
REMAIN
(Kgal) | DSS
(Kgal) | SLUDGE | | | SOLIDS
VOLUME
METHOD | SOLIDS
VOLUME
UPDATE | LAST
IN-TANK
PHOTO | LAST
IN-TANK
VIDEO | SEE
FOOTNOTE
FOR
THESE
CHANGES | | | | | | | | | | | an tani | K FARM ! | STATUS | , | | | | | | | | | AN-101 | DN | SOUND | DRCVR | 57.5 | 158 | 982 | 125 | o | 125 | 125 | 0 | 33 | 0 | FM | S
| 04/30/96 | 0/0/0 | | 1 | | AN-102 | CC | SOUND | CWHT | 388.0 | 1067 | 73 | 978 | 3 | 981 | 978 | 0 | 89 | 0 | FM | s | 08/22/89 | 0/0/0 | | | | AN-103 | DSS | SOUND | CWHT | 348.0 | 957 | 183 | 547 | 0 | 547 | 547 | 410 | 0 | 0 | FM | S | 03/31/97 | 10/29/87 | | 1 | | AN-104 | DSSF | SOUND | CWHT | 383,3 | 1054 | 86 | 605 | 48 | 653 | 631 | 0 | 449 | 0 | FM | S | 03/31/97 | 08/19/88 | | | | AN-105 | DSSF | SOUND | CWHT | 409.B | 1127 | 13 | 638 | 53 | 691 | 669 | 0 | 489 | 0 | FM | S | 03/31/97 | 01/26/88 | | | | AN-106 | CC | SOUND | CWHT | 14.2 | 39 | 1101 | 22 | 0 | 22 | 22 | 0 | 17 | 0 | FM | S | 08/22/89 | : 0/0/0 | | | | AN-107 | CC | SOUND | CWHT | 381.5 | 1049 | 91 | 802 | 23 | 825 | 803 | ٥ | 247 | 0 | FM | S | 08/22/89 | 09/01/88 | | | | 7 DOUB | LE-SHEL | L TANKS | | TOTALS | 5451 | 2529 | 3717 | 127 | 3844 | 3775 | 410 | 1324 | 0 | <u></u> | • | | | | | | | | | | | | | | | AP TANI | | | | | | | | 1 | | • | | AP-101 | | SOUND | DRCVR | | 1115 | 25 | 1115 | 0 | 1115 | 1115 | 0 | 0 | 0 | FM | S | 05/01/89 | | | | | AP-102 | | SOUND | GRTFD | 397.5 | 1093 | 47 | 1093 | 0 | 1093 | 1093 | 0 | 0 | 0 | FM | S | 07/11/89 | 0/0/0 | | | | AP-103 | | SOUND | DRCVR | | 26 | 1114 | 25 | 0 | 25 | 25 | | 1 | 0 | FM | \$ | 06/31/96 | 0/ 0/ 0 | | | | AP-104 | | SOUND | GRTFD | 9.1 | 25 | 1116 | 25 | 0 | 25 | 25 | 0 | 0 | 0 | FM | S | 10/13/88 | 0/ 0/ 0 | | | | AP-105 | | SOUND | CWHT | 278.9 | 767 | 373 | 678 | 3 | 681 | 678 | 0 | 69 | 0 | FM | S | 03/31/98 | 0/0/0 | 09/27/99 | (a) | | AP-106 | | SOUND | DRCVR | | 389 | 751 | 389 | 0 | 389 | 389 | 0 | 0 | 0 | FM | S | 10/13/88 | 0/0/0 | | | | AP-107
AP-108 | | SOUND | DRCVR | | 25
255 | 1115
885 | 25
256 | 0 | 25
255 | 25
255 | 0 | 0 | 0 | FM
FM | s
s | 10/13/68 | | | | | | | | | | | | L | | | | | | | | | | <u></u> | • | <u> </u> | | B DOUB | LE-SHEL | L TANKS | | TOTALS | 3695 | 5425 | 3605 | 3 | 3608 | 3605 | 0 | 90 | 0 | <u> </u> | | | <u> </u> | | <u> </u> | | | | | | | | | | | AW TAN | K FARM | STATU! | <u> </u> | | | | | | | | | AW-101 | DSSF | SOUND | CWHT | 408.7 | 1124 | 16 | 818 | 30 | 848 | 826 | 0 | 306 | 0 | FM | S | 03/31/97 | 03/17/88 | | ŀ | | AW-102 | DC | SOUND | EVFD | 198.5 | 546 | 594 | 506 | 0 | 506 | 506 | 0 | 40 | 0 | FM | s | 06/31/97 | 02/02/83 | | } | | AW-103 | DN/PD | SOUND | DRCVR | 186.2 | 512 | 628 | 165 | 35 | 200 | 178 | 0 | 347 | 0 | FM | S | 03/31/98 | 0/0/0 | | (a) | | AW-104 | DN | SOUND | DRCVR | 406.9 | 1119 | 21 | 888 | 30 | 918 | 896 | 0 | 156 | 75 | FM | S | 03/31/98 | 02/02/83 | | (a) | | AW-105 | DN/PD | SOUND | DRCVR | 157.8 | 434 | 706 | 179 | 24 | 203 | 181 | о | 255 | 0 | FM | s | 03/31/96 | 0/ 0/ 0 | | (a) | | AW-106 | CC | SOUND | SRCVR | 210.5 | 579 | 561 | 351 | 20 | 371 | 351 | 0 | 228 | 0 | FM | \$ | 08/31/97 | 02/02/83 | | | | 6 DOURI | LE-SHFI | L TANKS | | TOTALS | 4314 | 2526 | 2907 | 139 | 3046 | 2938 | 0 | 1332 | 75 | | | | - | | + | | | | | | · | 70.7 | 2010 | 2007 | 105 | 55-70 | 2000 | | 1 902 | , 3 | | | | <u></u> | | | NE ED 0193 1 #### TABLE E-5. INVENTORY AND STATUS BY TANK - DOUBLE SHELL TANKS July 31, 1998 | | | TANK S | TATUS | | | | | LIQU | IID VOLUN | AE | | SOLIDS V | OLUME | VOL | JME DETE | RMINATION | PHOTO | S/VIDEOS | | |--------|---------|-----------|-------|---------|--------|--------|--------|--------|---------------|------------------|--------|----------|-------|----------|----------|-----------|-----------|----------|----------| | | | | | | | | | DRAIN- | DRAIN- | PUMP- | | | | | | | | | SEE | | | | | | EQUIVA- | | | SUPER- | ABLE | ABLE | ABLE | | | | | | | | | FOOTNO | | | | | | LENT | TOTAL | AVAIL. | NATANT | INTER- | LIQUID | LIQUID | | | | riguid | SOLIDS | SOLIDS | LAST | LAST | FOR | | | WAST | | TANK | WASTE | WASTE | SPACE | rianto | STIT. | REMAIN | REMAIN | DSS | SLUDGE | SALT | VOLUME | VOLUME | VOLUME | IN-TANK | IN-TANK | THESE | | TANK | MATL | INTEGRITY | USE | INCHES | (Kgal) | (Kgal) | (Kgal) | (Kgal) | (Kgal) | (Kgal) | (Kgel) | | CAKE | METHOD | METHOD | UPDATE | PHOTO | VIDEO | CHANGE | | | | | | | | | | A | Y TANK | FARM ST | ATUS | | | | | | | | | | AY-101 | DC | SOUND | DRCVR | 62.5 | 172 | 808 | 64 | 5 | 69 | 64 | 0 | 108 | 0 | FM | s | 10/31/97 | 12/28/82 | | 1 | | AY-102 | DN | SOUND | DRCVR | 167.3 | 460 | 520 | 438 | 0 | 438 | 438 | 0 | | ō | FM | s | | 04/28/81 | | | | | | | | | | - | , , , | _ | , | ,,,, | _ | | _ | | • | 10,01,07 | 0-4/20/01 | | i | | DOUBL | E-SHELL | TANKS | | TOTALS | 632 | 1328 | 502 | 5 | 507 | 502 | 0 | 130 | 0 | _ | A | <u>Z TANK</u> | FARM SI | ATUS | | | _ | | | | | | | AZ-101 | AGING | SOUND | CWHT | 304.7 | 838 | 142 | 791 | 0 | 791 | 7 9 1 | 0 | 47 | 0 | FM | S | 10/31/97 | 06/18/63 | | 1 | | AZ-102 | AGING | SOUND | DRCVR | 322.9 | 888 | 92 | 784 | 5 | 789 | 784 | 0 | 104 | 0 | FM | s | 10/31/97 | 10/24/84 | | | | | | | | | *** | | | , | | | | | | | | | | | <u> </u> | | DOUBL | E-SHELL | TANKS | | TOTALS | 1726 | 234 | 1575 | . 5 | 1580 | 1575 | 0 | 151 | 0 | | | | | | <u> </u> | | | | | | | | | | e | V TANE | FARM ST | ATTIC | | | | | | | | | | Y-101 | СС | SOUND | CWHT | 415.6 | 1143 | | | _ | | | | | _ | l | _ | | | | I | | Y-102 | | SOUND | | | | 0 | 1102 | 0 | 1102 | 1102 | 0 | 41 | 0 | FM | S | 05/31/96 | | | (b) | | | | | DRCVR | 282.5 | 777 | 363 | 689 | 0 | 689 | 689 | 0 | | 0 | FM | S | 03/31/98 | | | (a) | | Y-103 | CC | SOUND | CWHT | 271.3 | 746 | 394 | 380 | 0 | 380 | 380 | 0 | 362 | 4 | FM | \$ | 06/30/96 | 10/01/85 | ٠. | | | DOUBL | E-SHELL | TANKS | | TOTALS | 2666 | 757 | 2171 | 0 | 2171 | 2171 | 0 | 491 | 4 | | | | | | | | RAND 1 | TOTAL | | | | 18484 | 12799 | 14477 | 279 | 14756 | 14568 | 410 | 3518 | 79 | <u> </u> | | | | , , | | Note: +/- 1 Kgal differences are the result of computer rounding #### **Available Space Calculations** **Used in This Document** IOSR WHC-SD-WM-OSR-16 (AN, AP, AW, SY) ___Tank Farms (Most Conservative) WHC-T-151-00009 (Aging Waste) AN, AP, AW, SY 1,140,000 gal (414.5 in.) 1,144,000 gal (416 in.)(AN, AP, SY) 1,127,500 (410 In.) (AW-Farm) HNF-EP-0182-124 AY, AZ (Aging Waste) 980,000 gal (356,4 ln.) 1,000,000 gal (363.6 ln.)(AY, AZ) NOTE: Tanks AN-102, AN-107, AY-101, AY-102, AP-103, AP-104, AP-107 - These tanks currently contain waste that is outside of the current corrosion control specification. An alternate strategy of corrosion control (monitor using corrosion probes; adjust chemistry as required for control) is being proposed but has not been fully evaluated. Note that the supernate in AY-102 is within the corrosion specifications, however, the sludge layer is outside the specifications. (a) Solida levels in tenks AP-105, AW-103, AW-104, AW-105, and SY-102 were adjusted based on document HNF-SD-WM-TI-806, "Safety Control Optimization by Performance Evaluation-Analysis Tool (SCOPE-AT) Padigree Database for Hanford Tanks," which will soon be released. (b) Tank SY-101 - Total Waste exceeds the most conservative calculations used for these tanks, but does not exceed the OSR requirements TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS July 31, 1998 | | TANK S | STATUS | | | | | LIQ | NID AOFR | ME | | SOLIDS | VOLUME | VOLUM | E DETERMIN | NATION | PHOTOS/\ | (IDEOS_ | | |---------------|-------------|-----------|-----------|--------|--------|--------|--------|------------|-----------|-----------|--------|--------|---------|------------|----------|----------|-----------|----------| | | | | | | ! | DRAIN- | | | DRAIN- | PUMP- | | | Ì | | | | | SEE | | | | | | | SUPER- | ABLE | PUMPED | | ABLE | ABLE | | | ŀ | | | | | FOOTNOT | | | | | STABIL/ | TOTAL | NATE | INTER- | THIS | TOTAL | LIQUID | LIQUID | | SALT | LiQUIDS | SOLIDS | SOLIDS | LAST | LAST | FOR | | | WASTE | TANK | ISOLATION | WASTE | rianid | STIT. | MONTH | PUMPED | REMAIN | REMAIN | SLUDGE | CAKE | VOLUME | VOLUME | VOLUME | IN-TANK | IN-TANK | THESE | | TANK | MAT'L. | INTEGRITY | STATUS | (Kgal) | (Kgal) | (Kgal) | (Kgal) | (Kgal) | (Kgel) | (Kgal) | (Kgal) | (Kgal) | METHOD | METHOD | UPDATE | PHOTO | VIDEO | CHANGES | | | | | | | | | | A TAI | NK FARM | STATUS | | | | | | | | | | A-101 | DSSF | SOUND | /PI | 953 | 0 | 464 | 0.0 | 0.0 | 464 | 441 | 3 | 950 | P | F | 11/21/80 | 08/21/85 | | l | | A-102 | DSSF | SOUND | IS/Pf | 41 | 4 | 2 | 0.0 | 39.5 | 6 | 0 | 15 | 22 | P | FP | 07/27/89 | 07/20/89 | | l | | A-103 | DSSF | ASMD LKR | IS/IP | 371 | 5 | 15 | 0.0 | 111.0 | 20 | 0 | 366 | 0 | [- | FP | 06/03/88 | 12/26/88 | | l | | A-104 | NCPLX | ASMD LKR | IS/IP | 28 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 28 | 0 | . м | PS | 01/27/78 | 06/25/86 | | | | A-105 | NCPLX | ASMD LKR | IS/IP | 19 | 0 | 4 | 0.0 | 0.0 | 4 | 0 | 19 | 0 | P | MP | 08/23/79 | 08/20/86 | | | | A-106 | CP | SOUND | IS/IP | 1 25 | ٥ | 7 | 0.0 | 0.0 | 7 | 0 | 125 | 0 | P | M | 09/07/82 | 08/19/86 | | l | | SINC | BLE-SHELL | TANKS | TOTALS | 1537 | 9 | 492 | 0.0 | 150.5 | 501 | 441 | 556 | 972 | | | · | | | _ | | | | | | | | | | 436 MA | NIZ BARRA | OT A TIME | | | | | 2 | | | | | A V. 10 |)1 DSSF | SOUND | /Pe | 740 | 1 . | 050 | | | NK FARM | | | 245 | | _ | | l | | 1 | | | | | /Pf | 748 | 0 | 359 | 0.0 | 0.0 | 359 | 338 | 3 | 745 | P | F | 07/16/97 | | | | | | 02 CC | ASMD LKR | IS/IP | 39 | 3 | 14 | 0.0 | 13.0 | 17 | 3 | 7 | 29 | F | s | 09/06/88 | 06/05/89 | | | | | 3 CC | SOUND | IS/IP | 112 | 0 | 36 | 0.0 | 0.0 | 36 | 3 | 2 | 110 | F | S | 08/19/87 | 08/13/87 | | } | | AX-10 | 4 NCPLX | ASMD LKR | IS/IP | 7 | ľ° | 0 | 0.0 | 0.0 | 0 | 0 | 7 | 0 | P | М | 04/28/82 | 08/18/87 | | | | 4 SINC | BLE-SHELL 1 | TANKS | TOTALS: | 906 | 3 | 409 | 0.0 | 13.0 | 412 | 344 | 19 | 884 | | | | | | | | | | | | | | | | R TAN | K FARM | STATUS | | | | | | | • | | | B-101 | NCPLX | ASMD LKR | IS/IP | 113 | ه ا | 6 | 0.0 | 0.0 | 6 | 0 | 113 | o | l p | F | 04/28/82 | 05/19/83 | | 1 | | B-102 | | SOUND | IS/IP | 32 | 4 | 0 | 0.0 | 0.0 | 4 | 0 | 18 | 10 | P | ,
F | 08/22/85 | 1 | | |
| B-103 | | ASMD LKR | IS/IP | 59 | | 0 | 0.0 | 0.0 | 0 | 0 | 59 | 0 | F | F | 02/28/85 | 10/13/88 | | | | B-104 | | SOUND | IS/IP | 371 | Ĭ | 46 | 0.0 | 0.0 | 47 | 40 | 301 | 69 | м | M | 06/30/85 | 10/13/88 | | | | B-105 | | ASMD LKR | IS/IP | 306 | | 23 | 0.0 | 0.0 | 23 | 0 | 40 | 266 | P | MP | 12/27/84 | 05/19/88 | | 1 | | B-106 | | SOUND | IS/IP | 117 | 1 | 6 | 0.0 | 9.0 | 7 | 0 | 116 | 200 | [| mr
F | 03/31/85 | 02/28/85 | • | 1 | | B-107 | | ASMD LKR | IS/IP | 165 | ; | 12 | 0.0 | 0.0 | 13 | 7 | 164 | | [| M | | | | | | 3-108 | NCPLX | SOUND | IS/IP | 94 | | 4 | 0.0 | 0.0 | 13 | 0 | 94 | 0 | M
F | M
F | 03/31/85 | L | | | | 3-10 9 | NCPLX | SOUND | IS/IP | 127 | ľ | 8 | 0.0 | - | • | | | 0 | · • | • | 05/31/85 | 05/10/85 | | l | | 3-110 | | ASMO LKR | IS/IP | 246 | 1 | 22 | 0.0 | 0.0
0.0 | 8 | 0 | 127 | 0 | M | M | 04/08/85 | 04/02/85 | | | | 3-111 | NCPLX | ASMD LKR | IS/IP | 237 | | 21 | 0.0 | | 23 | 17 | 245 | 0 | MP | MP
F | 02/28/85 | 03/17/88 | | | | 3-112 | | ASMO LKR | IS/IP | 33 | 3 | 21 | = | 0.0 | 22 | 16 | 236 | 0 | [| F | 06/28/85 | 06/26/85 | | 1 | | 3-201 | NCPLX | ASMO LKR | • | - | 1 . | = | 0.0 | 0.0 | 3 | 0 | 30 | 0 | li . | • | 05/31/85 | 05/29/85 | 00100 101 | | | | | SOUND | IS/IP | 29 | 1 | 3 | 0.0 | 0.0 | 4 | 0 | 28 | 0 | M | M | 04/28/82 | 1 | | | | 3-202 | | | IS/IP | 27 | 0 | 3 | 0.0 | 0.0 | 3 | 0 | 27 | 0 | P | M | 05/31/85 | 05/29/86 | 06/15/9 | <u>'</u> | | 3-203 | NCPLX | ASMD LKR | IS/IP | 51 | 1 | 5 | 0.0 | 0.0 | 6 | 0 | 50 | 0 | 1 | PM | 05/31/84 | 11/13/86 | | 1 | | 3-204 | NCPLX | ASMD LKR | IS/IP | 50 | 1 | 5 | 0.0 | 0.0 | 6 | 0 | 49 | 0 | P | М | 05/31/84 | 10/22/87 | | 1 | ₩ 8 | _ | TANK STATUS | | | | | | LIQ | UID VOLU | ME | | SOLIDS | VOLUME | VOLUM | E DETERMI | NATION | PHOTOS | VIDEOS | L | |---------|-------------|-----------|-----------|--------|--------|----------------|--------|----------|----------------|---------------|--------|--------|---------|-----------|----------|----------|----------|-----------------| | | | | | | | DRAIN-
ABLE | PUMPED | | DRAIN-
ABLE | PUMP-
ABLE | | | | , | | | | SEE
FOOTNOTE | | | | | STABIL/ | TOTAL | SUPER- | INTER- | THIS | TOTAL | LIQUID | LIQUID | · | SALT | LIQUIDS | SOLIDS | SOLIDS | LAST | LAST | FOR | | | WASTE | TANK | ISOLATION | WASTE | NATE | STIT. | MONTH | PUMPED | REMAIN | REMAIN | SLUDGE | CAKE | VOLUME | VOLUME | VOLUME | IN-TANK | IN-TANK | THESE | | TANK | MAT'L. | INTEGRITY | STATUS | (Kgal) METHOD | METHOD | UPDATE | PHOTO | VIDEO | CHANGES | | | | | | | | | | RX TA | NK FARM | SILTATE | | | | | | | | | | BX-101 | NCPLX | ASMD LKR | IS/IP/CCS | 43 | 1 1 | o | 0.0 | 0.0 | 1 | 0 | 42 | 0 | P | м | 04/28/82 | 11/24/88 | 11/10/94 | .] | | BX-102 | NCPLX | ASMO LKR | IS/IP/CCS | 96 | | 4 | 0.0 | 0.0 | 4 | 0 | 96 | 0 | Р | M | 04/28/82 | 09/18/85 | | 1 | | BX-103 | NCPLX | SOUND | IS/IP/CCS | 68 | 6 | 0 | 0.0 | 0.0 | 6 | 0 | 62 | 0 | P | F | 11/29/83 | 10/31/86 | 10/27/94 | , i | | BX-104 | NCPLX | SOUND | IS/IP/CCS | 99 | 3 | 30 | 0.0 | 17.4 | 33 | 27 | 96 | 0 | F | F | 09/22/89 | 09/21/89 | | | | BX-106 | NCPLX | SOUND | IS/IP/CCS | 61 | 5 | 6 | 0.0 | 15.0 | 11 | 4 | 43 | 3 | F | \$ | 09/03/86 | 10/23/86 | | | | BX-106 | NCPLX | SOUND | IS/IP/CCS | 38 | ٥ | 0 | 0.0 | 14.0 | 0 | 0 | 38 | 0 | MP | PS | 08/01/95 | 05/19/88 | 07/17/95 | ; | | BX-107 | NCPLX | SOUND | IS/IP/CCS | 345 | 1 | 29 | 0.0 | 23.1 | 30 | 23 | 344 | 0 | MP | P | 09/18/90 | 09/11/90 | | | | BX-108 | NCPLX | ASMD LKR | IS/IP/CCS | 26 | 0 | 1 | 0.0 | 0.0 | 1 | 0 | 26 | 0 | м | PS | 07/31/79 | 05/05/94 | | | | BX-109 | NCPLX | SOUND | IS/IP/CCS | 193 | 0 | 13 | 0.0 | 8.2 | 13 | 8 | 193 | 0 | FP | P | 09/17/90 | 09/11/90 | | | | BX-110 | NCPLX | ASMD LKR | IS/IP/CCS | 207 | 3 | 16 | 0.0 | 1.5 | 19 | 13 | 195 | 9 | MP | M | 10/31/94 | 07/15/94 | 10/13/94 | ıl | | BX-111 | NCPLX | ASMD LKR | IS/IP/CCS | 162 | 1 | 1 | 0.0 | 116.9 | 3 | 1 | 52 | 109 | М | M | 04/06/95 | 06/19/94 | 02/28/95 | s l | | BX-112 | NCPLX | SOUND | IS/IP/CCS | 165 | 1 | 7 | 0.0 | 4.1 | 8 | 2 | 164 | 0 | FP | P | 09/17/90 | 09/11/90 | | | | 12 SING | BLE-SHELL | TANKS | TOTALS: | 1493 | 21 | 107 | 0.0 | 200.2 | 129 | 78 | 1351 | 121 | | | | | | <u> </u> | | | | | | | | | | BY TA | NK FARM | STATUS | | | | | | | | | | BY-101 | NCPLX | SOUND | IS/IP | 387 | 0 | 5 | 0.0 | 35.8 | 5 | 0 | 109 | 278 | P | М | 05/30/84 | 09/19/89 | | 1 | | BY-102 | NCPLX | SOUND | IS/PI | 277 | 0 | 11 | 0.0 | 159.0 | 11 | 0 | 0 | 277 | MP | M | 06/01/96 | 09/11/87 | 04/11/95 | 5 | | BY-103 | NCPLX | ASMD LKR | IS/PI | 414 | 0 | 38 | 0.0 | 95.9 | 38 | 32 | 5 | 409 | MP | M | 11/25/97 | 09/07/89 | 02/24/97 | , | | BY-104 | NCPLX | SOUND | IS/IP | 406 | 0 | 18 | 0.0 | 329.5 | 18 | 0 | 40 | 366 | P | М | 04/28/82 | 04/27/83 | | i | | BY-105 | NCPLX | ASMD LKR | /P1 | 503 | 0 | 228 | 0.0 | 0.0 | 228 | 216 | 44 | 459 | P | MP | 07/16/97 | 07/01/86 | ı | | | BY-106 | NCPLX | ASMD LKR | /PI | 642 | 0 | 200 | 0.0 | 63.7 | 200 | 163 | 95 | 547 | P | MP | 04/28/82 | 11/04/82 | | | | BY-107 | NCPLX | ASMD LKR | IS/IP | 266 | 0 | 25 | 0.0 | 56.4 | 25 | 0 | 60 | 206 | P | MP | 04/28/82 | 10/15/88 | 1 | 1 | | BY-108 | NCPLX | ASMD LKR | IS/IP | 228 | 0 | 9 | 0.0 | 27.5 | 9 | 0 | 154 | 74 | MP | M | 04/28/82 | 10/15/86 | 1 | | | BY-109 | NCPLX | SOUND | IS/PI | 290 | 0 | 37 | 0.0 | 157.1 | 37 | 20 | 57 | 233 | F | PS | | 06/18/97 | | 1 | | BY-110 | NCPLX | SOUND | IS/IP | 398 | 0 | 9 | 0.0 | 213.3 | 9 | 0 | 103 | 295 | М | s | 09/10/79 | 07/26/84 | | | | BY-111 | NCPLX | SOUND | IS/IP | 459 | 0 | 0 | 0.0 | 313.2 | 0 | 0 | | 438 | P | M | | 10/31/86 | | 1 | | BY-112 | NCPLX | SOUND | IS/IP | 291 | 0 | 8 | 0.0 | 116.4 | 8 | 0 | | 286 | P | M | | 04/14/88 | | | | | | TANKS | TOTALS: | 4561 | | | | | | | ļ | | | | | | | | Ļ TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS July 31, 1998 | | TANK | STATUS | | | | | LIQ | UID VOLU | ME | | SOLIDS | VOLUME | | VOLUM | E DETERMIN | IATION | | | |--------------|--------------|-----------|-----------|--------|--------|------------|------------|---------------|---------|--------|--------|--------|--------------|----------|-------------------|----------|----------|--------------| | | | | | | | DRAIN- | | • | DRAIN- | PUMP- | | | | | | | _ | SEE | | | | | | | | ABLE | PUMPED | | ABLE | ABLE | | | | | | | | FOOTNOT | | | | | STABIL/ | TOTAL | SUPER- | INTER- | THIS | TOTAL | LIQUID | LIQUID | | SALT | LIQUIDS | SOLIDS | SOLIDS | LAST | LAST | FOR | | | WASTE | TANK | ISOLATION | WASTE | NATE | STIT. | MONTH | PUMPED | REMAIN | REMAIN | SLUDGE | CAKE | VOLUME | VOLUME | VOLUME | IN-TANK | IN-TANK | THESE | | TANK | MAT'L. | INTEGRITY | STATUS | (Kgal) | (Kgal) | (Kgal) | (Kgal) | (Kgal) | (Kgai) | (Kgel) | (Kgal) | (Kgal) | METHOD | METHOD | UPDATE | PHOTO | VIDEO | CHANGES | | | | | | | | | | C TA | NK FARM | STATUS | | | | | | | | | | C-101 | NCPLX | ASMD LKR | IS/IP | 88 | 0 | 3 | 0.0 | 0.0 | 3 | 0 | 89 | 0 | М | М | 11/29/83 | 11/17/87 | | 1 | | C-102 | ĐC | SOUND | IS/IP | 316 | 0 | 30 | 0.0 | 46.7 | 30 | 17 | 316 | 0 | F | FÉ | 09/30/95 | 05/18/76 | 08/24/95 | : | | C-103 | NCPLX | SOUND | /PI | 195 | 133 | 2 | 0.0 | 0.0 | 135 | 133 | 62 | 0 | F | s | 10/20/90 | 07/28/87 | | | | C-104 | CC | SOUND | IS/IP | 295 | 0 | 11 | 0.0 | 0.0 | 11 | 5 | 295 | 0 | FP | P | 09/22/89 | 07/25/90 | | | | C-105 | NCPLX | SOUND | IS/PI | 134 | 2 | 30 | 0.0 | 0.0 | 32 | 9 | 132 | 0 | F | s | 10/31/95 | 08/05/94 | 08/30/95 | ; | | C-106 | NCPLX | SOUND | /PI | 228 | 32 | 30 | 0.0 | 0.0 | 62 | 52 | 197 | o | F | PS | 04/28/82 | 08/05/94 | 08/08/94 | ı | | C-107 | DC | SOUND | IS/IP | 237 | 0 | 24 | 0.0 | 40.8 | 24 | 15 | 237 | 0 | F | S | 09/30/95 | 00/00/00 | | | | C-108 | NCPLX | SOUND | IS/IP | 66 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 66 | 0 | м | S | 02/24/84 | 12/05/74 | 11/17/94 | ı] | | C-109 | NCPLX | SOUND | IS/IP | 66 | 4 | 0 | 0.0 | 0.0 | 4 | 0 | 62 | 0 | м | PS | 11/2 6/ 83 | 01/30/76 | | <u> </u> | | C-110 | DC | ASMD LKR | IS/IP | 178 | 1 | 28 | 0.0 | 15.5 | 29 | 15 | 177 | 0 | F | FMP | 06/14/95 | 08/12/86 | 05/23/95 | : | | C-111 | NCPLX | ASMD LKR | IS/IP | 57 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 57 | 0 | м | s | 04/28/82 | 02/25/70 | 02/02/95 | ;} | | C-112 | NCPLX | SOUND | IS/IP | 104 | 0 | 32 | 0.0 | 0.0 | 32 | 26 | 104 | 0 | м | PS | 09/18/90 | 09/18/90 | | ŀ | | C-201 | NCPLX | ASMD LKR | IS/IP | 2 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 2 | 0 | P | MP | 03/31/82 | 12/02/86 | | l | | C-202 | EMPTY | ASMD LKR | IS/IP | 1 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 1 | 0 | P | M | 01/19/79 | 12/09/86 | | 1 | | C-203 | NCPLX | ASMD LKR | IS/IP | 5 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 5 | 0 | P | MP | 04/28/82 | 12/09/86 | | 1 | | C-204 | NCPLX | ASMD LKR | IS/IP | 3 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 3 | 0 | P | MP | 04/28/82 | 12/09/86 | : | | | 6 SIN | GLE-SHELL | TANKS | TOTALS: | 1976 | 172 | 190 | 0.0 | 103.0 | 362 | 272 | 1804 | 0 | | | | | | ļ | | | | | 1011100 | .070 | 1,72 | 130 | 0.0 | | | | 100.4 | | 1 | | | | | | | S-101 | NCPLX | SOUND | /PI | 427 | 1 12 | 126 | 0.0 | | NK FARM | | 1 | | | | | | | | | S-102 | DSSF | SOUND | /PI | 549 | 'ő | 262 | | 0.0 | 138 | 127 | 244 | 171 | F | PS 55 | 09/16/80 | | | 1 | | S-103 | DSSF | SOUND | /PI | 248 | 17 | 101 | 0.0 | 0.0 | 262 | 239 | 4 | 545 | P | FP | 04/28/82 | | | | | -104 | NCPLX | ASMD LKR | IS/IP | 294 | l 'í | 28 | 0.0 | 0.0
0.0 | 118 | 97 | 10 | 221 | M | S | 11/20/80 | | | 1 | | 3-105 | NCPLX | SOUND | IS/IP | 456 | , | 35 | | | 29 | 23 | 293 | 0 | M | М | 12/20/84 | 12/12/84 | | | | S-106 | NCPLX | SOUND | /PI | 479 | 4 | 186 | 0.0 | 114.3
97.0 | 35 | 13 | 2 | 454 | MP | S | 09/26/88 | 1 | **** | . | | -107 | NCPLX | SOUND | /PI | 376 | 14 | 85 | 0.0 | 0.0 | 190 | 168 | 28 | 447 | P | FP | 12/31/93 | | 09/12/94 | ' | | -108 | NCPLX | SOUND | IS/Pt | 450 | '* | 4 | | | 99 | 88 | 293 | 69 | F | PS | 09/25/80 | 1 | | | | -109 | NCPLX | SOUND | /PI | 568 | 0 | - | 0.0
0.0 | 199.8 | 4 | 0 | 4 |
446 | P | MP | 12/20/96 | | 12/03/96 | 1 | | -108
-110 | NCPLX | SOUND | IS/PI | 390 | | 141
30 | 0.0 | 111.0 | 141 | 119 | 13 | 555 | F | PS
~~ | 09/30/75 | 08/24/84 | | .i | | F111 | NCPLX | SOUND | /PI | 540 | | | | 203.1 | 30 | 23 | 131 | 259 | F | PS | 05/14/92 | | 12/11/96 | 1 | | -112 | NCPLX | SOUND | /PI | 523 | 23 | 195
110 | 0.0 | 3.3 | 205 | 134 | 139 | 378 | P | FP | 06/30/97 | 08/10/89 | | 1 | | | 1101 () | JOUND | /F1 | 923 | " | 110 | 0.0 | 125.1 | 110 | 107 | 5 | 518 | P | FP | 12/31/93 | 03/24/87 | | i | | 2 SIN | GLE-SHELL | TANKS | TOTALS: | 5300 | 71 | 1303 | 0.0 | 853.6 | 1361 | 1138 | 1166 | 4063 | | | | | - | | F-1 TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS July 31, 1998 | | TANK S | TATUS | | | | | LIQ | UID VOLU | ME | | SOLIDS | VOLUME | | VOLUM | E DETERMIN | NATION | | | |---------|-----------------|-------------------|---------------------|-------|----------------|--------------------------|-----------------|------------------|--------------------------|-------------------------|------------------|--------|------------------|------------------|------------------|------------------|-----------------|--------------------------------| | | | | STABIL/ | TOTAL | SUPER- | DRAIN-
ABLE
INTER- | PUMPED
THIS | TOTAL | DRAIN-
ABLE
LIQUID | PUMP-
ABLE
LIQUID | | SALT | LIQUIDS | SOLIDS | SOLIDS | LAST | LAST
IN-TANK | SEE
FOOTNOT
FOR
THESE | | TANK | WASTE
MAT'L. | TANK
INTEGRITY | ISOLATION
STATUS | | NATE
(Kgal) | STIT.
(Kgel) | MONTH
(Kgal) | PUMPED
(Kgal) | REMAIN
(Kgal) | REMAIN
(Kgal) | SLUDGE
(Kgal) | (Kgel) | VOLUME
METHOD | VOLUME
METHOD | VOLUME
UPDATE | IN-TANK
PHOTO | VIDEO | CHANGES | | | | -, , | | | | | | SV TAI | NK FARM | CTATIC | | | | | | | | | | cv 101 | 00 | 001110 | , P. I | 450 | | 104 | 0.0 | 0.0 | 185 | 174 | 112 | 343 | l p | FP | 04/28/82 | 03/10/89 | | 1 | | SX-101 | | SOUND | /PI | 456 | 1 | 184 | 0.0 | | 226 | 216 | 117 | 426 | | M | 04/28/82 | | | | | SX-102 | | SOUND | /Pt | 543 | | 226 | 0.0 | 0.0
0.0 | 282 | 272 | 115 | 536 | [| S | 07/15/91 | 12/17/87 | | | | | NCPLX | SOUND | /PI | 652 | ! ! | 281
197 | 0.0
3.3 | 117.3 | 197 | 191 | 136 | 478 | [| S | 07/07/89 | 09/08/88 | 02/04/96 | (a) | | SX-104 | | ASMO LKR | /PI | 614 | l ° | •-• | | 0.0 | 309 | 299 | 73 | 610 | | F | 04/28/82 | | 02/0// | 1 " | | SX-105 | | SOUND | /PI | 683 | 0 | 309 | 0.0
0.0 | 0.0 | 285 | 264 | 12 | 465 | '_ | PS | 10/28/80 | | | l | | | NCPLX | SOUND | /PI | 538 | 61 | 224
5 | 0.0 | 0.0 | 205
5 | 297 | 104 | 405 | | M | 04/28/82 | | | i | | | NCPLX | ASMD LKR | IS/IP | 104 | l ° | - | | 0.0 | 5 | 0 | 87 | o | | м | 12/31/93 | · · | | 1 | | | NCPLX | ASMD LKR | IS/IP | 87 | 0 | 5 | 0.0 | | _ | 25 | l % | 244 | | M | 01/10/96 | | | | | | NCPLX | ASMD LKR | IS/IP | 244 | 0 | 48 | 0.0 | 0.0
0.0 | 48 | 0 | 62 | 244 | M | PS | 10/06/76 | | | | | | NCPLX | ASMD LKR | IS/IP | 62 | 0 | 0 | 0.0 | | 0
7 | 0 | 125 | 0 | | PS | 06/31/74 | 1 | | | | | NCPLX | ASMD LKR | IS/IP | 125 | 0 | 7 | 0.0 | 0.0 | | 0 | 92 | 0 | | M | 04/28/82 | i | | | | | NCPLX | ASMD LKR | IS/IP | 92 | 0 | 3 | 0.0 | 0.0 | 3 | 0 | | 0 | | M | 04/28/82 | 1 | | | | | NCPLX | ASMD LKR | IS/IP | 26 | 0 | 0 | 0.0 | 0.0 | 0 | _ | 26 | | | M | 04/28/82 | 1 | | | | | NCPLX | ASMD LKR | IS/IP | 181 | ° | 14 | 0.0 | 0.0 | 14 | 0 | 181 | 0 | | M | 04/28/82 | 1 | | 1 | | 5X-115 | NCPLX | ASMD LKR | IS/IP | 12 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 12 | 0 | ' | M | V+/20/04 | 03/31/66 | ٠. | | | 15 SINC | 3LE-SHELL | TANKS | TOTALS: | 4419 | 63 | 1503 | 3.3 | 117.3 | 1566 | 1441 | 1254 | 3102 | | | | l | | <u> </u> | | | | | | | | | | т таг | NK FARM | STATUS | | | | | | | | | | T-101 | NCPLX | ASMD LKR | IS/PI | 102 | 1 1 | 16 | 0.0 | 25.3 | 17 | 0 | 101 | o | F | s | 04/14/93 | 04/07/93 | | 1 | | T-102 | NCPLX | SOUND | IS/IP | 32 | 1 | 0 | 0.0 | 0.0 | 13 | 13 | i | o | | FP | 08/31/84 | 1 | | | | T-102 | NCPLX | ASMD LKR | IS/IP | 27 | '4 | 0 | 0.0 | 0.0 | 4 | 0 | 1 | | | FP | 11/29/83 | 1 | | | | T-104 | NCPLX | SOUND | 13/IF
/Pi | 340 | 1 . | 60 | 4.2 | 127.4 | 60 | 57 | | | | MP | 06/30/96 | 1 | | (6) | | T-105 | NCPLX | SOUND | IS/IP | 98 | " | 23 | 0.0 | 0.0 | 23 | 17 | | | | F | 05/29/87 | | | '-" | | | NCPLX | ASMD LKR | IS/IP | | 2 | 23 | 0.0 | 0.0 | 23 | | 1 | | | FP. | 04/28/82 | | | 1 | | T-106 | | | | 21 | 6 | _ | | | | | 1 | | | FP | 06/31/96 | | 05/09/9 | 6 | | T-107 | NCPLX | ASMD LKR | IS/PI | 173 | | 22 | 0.0 | 11.0 | 22 | | 1 | | 1 | M | | 07/12/84 | | ٦ | | T-108 | NCPLX | ASMD LKR | IS/IP | 44 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 44 | U | ' I ' F | M | V=120/02 | ין טוויווסיי | • | j | - TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS July 31, 1998 | | TANK S | TATUS | | | <u> </u> | | LIC | IUID VOLU | ME | | SOLIDS | VOLUME | VOLUI | VE DETERM | INATION | | | | |-------|-----------|-----------|-----------|--------|----------|--------|--------|-----------|---------|--------|--------|--------|--------------|-----------|----------------------|--------------|--------------|--| | | | | | | | DRAIN- | | | DRAIN- | PUMP- | | | | | | | | SEE | | | | | | | | ABLE | PUMPED | | ABLE | ABLE | ł | | | | | | | FOOTNOT | | | | | STABIL/ | TOTAL | SUPER- | INTER- | THIS | TOTAL | LIQUID | LIQUID | l | SALT | LIQUIDS | SOLIDS | SOLIDS | LAST | LAST | FOR | | | WASTE | TANK | ISOLATION | WASTE | NATE | STIT. | MONTH | PUMPED | REMAIN | REMAIN | SLUDGE | CAKE | VOLUME | VOLUME | VOLUME | IN-TANK | IN-TANK | THESE | | TANK | MAT'L. | INTEGRITY | STATUS | (Kgal) (Kgel) | (Kgal) | METHOD | METHOD | UPDATE | PHOTO | VIDEO | CHANGES | | | | | | | 1 _ | | | | _ | | | _ | ١ | | | l | | 1 | | -109 | NCPLX | ASMD LKR | IS/IP | 58 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 58 | 0 | 1 | M | 12/30/84 | | | ١ | | -110 | NCPLX | SOUND | /PI | 361 | 0 | 20 | 5.9 | 23.2 | 20 | 17 | 361 | 0 | P | FP | 09/30/97 | 07/12/84 | | (c) | | -111 | NCPLX | ASMO LKR | IS/PI | 446 | 0 | 34 | 0.0 | 9.6 | 34 | 29 | 446 | 0 | P | FP | 04/18/94 | | 02/13/95 | | | -112 | NCPLX | SOUND | IS/IP | 67 | 7 | 0 | 0.0 | 0.0 | 7 | 7 | 60 | 0 | P | FP | 04/26/82 | 08/01/B4 | | | | -201 | NCPLX | SOUND | IS/IP | 29 | 1 | 3 | 0.0 | 0.0 | 4 | 0 | 28 | 0 | M | PS | 05/31/78 | | | | | -202 | NCPLX | SOUND | IS/IP | 21 | 0 | 2 | 0.0 | 0.0 | 2 | 0 | 21 | 0 | FP | P | 07/12/81 | 07/06/89 | | 1 | | -203 | NCPLX | SOUND | IS/IP | 35 | 0 | 4 | 0.0 | 0.0 | 4 | 0 | 35 | 0 | M | PS | 01/31/78 | 08/03/89 | | | | -204 | NCPLX | SOUND | IS/IP | 38 | 0 | 4 | 0.0 | 0.0 | 4 | 0 | 38 | 0 | FP | P | 07/22/81 | 06/03/69 | | | | 6 SIN | GLE-SHELL | TANKS | TOTALS: | 1692 | 28 | 188 | 10,1 | 196.5 | 216 | 152 | 1864 | 0 | <u> </u> | | | | - | | | | | | | 1002 | | 100 | | 100.0 | 2.0 | | 1 1001 | | <u> </u> | | | | | <u> </u> | | | | | | | | | | TX TA | NK FARM | STATUS | | | | | | | | | | X-101 | NCPLX | SOUND | IS/IP/CCS | 87 | 3 | 2 | 0.0 | 0.0 | 5 | 0 | 84 | 0 | F | P | 02/02/84 | 10/24/85 | | 1 | | X-102 | NCPLX | SOUND | IS/IP/CCS | 217 | 0 | 22 | 0.0 | 94,4 | 22 | 0 | 0 | 217 | M | S | 08/31/84 | 10/31/85 | | | | X-103 | NCPLX | SOUND | IS/IP/CCS | 157 | 0 | 15 | 0.0 | 68.3 | 15 | 0 | 157 | 0 | F | S | 08/14/80 | 10/31/85 | | l | | X-104 | NCPLX | SOUND | IS/IP/CCS | 65 | 1 | 14 | 0.0 | 3.6 | 15 | 0 | ا ه | 64 | F | F₽ | 04/06/84 | 10/16/84 | | | | X-105 | NCPLX | ASMD LKR | IS/IP/CCS | 609 | 0 | 20 | 0.0 | 121.5 | 20 | o | ا ه | 609 | м | PS | 08/22/77 | 10/24/89 | 4 | i | | X-106 | NCPLX | SOUND | IS/IP/CCS | 453 | 0 | 10 | 0.0 | 134.6 | 10 | o | ٥ | 453 | м | s | 08/29/77 | 10/31/85 | | | | X-107 | NCPLX | ASMD LKR | IS/IP/CCS | 36 | 1 1 | 1 | 0.0 | 0.0 | 2 | 0 | 0 | 35 | FP | FP | 01/20/84 | 10/31/85 | | | | X-108 | NCPLX | SOUND | IS/IP/CCS | 134 | 0 | 0 | 0.0 | 13.7 | 0 | 0 | 0 | | Р | FP | 05/30/83 | | | | | X-109 | NCPLX | SOUND | IS/IP/CCS | 384 | 0 | 10 | 0.0 | 72.3 | 10 | 0 | ٥ | | F | PS | 05/30/83 | | | 1 | | | NCPLX | ASMD LKR | IS/IP/CCS | 462 | o | 15 | 0.0 | 115.1 | 15 | o | ه ا | | М | PS | 05/30/83 | | ı | 1 | | | NCPLX | SOUND | IS/IP/CCS | 370 | 0 | 9 | 0.0 | 98.4 | 9 | 0 | ٥ | | 1 | PS | 07/26/77 | | | 1 | | | NCPLX | SOUND | IS/IP/CCS | 649 | ٥ | 24 | 0.0 | 94.0 | 24 | o | I - | | "" | PS | 05/30/83 | 1 ' ' | | | | | NCPLX | ASMO LKR | IS/IP/CCS | 607 | Ĭ | 16 | 0.0 | 19.2 | 16 | 0 | 1 | | l M | PS | 05/30/83 | | 09/23/94 | .l | | | NCPLX | ASMD LKR | IS/IP/CCS | 535 | 0 | 15 | 0.0 | 104.3 | 15 | 0 | 1 | | 1 | PS | 05/30/83
05/30/83 | | 03/23/9 | 1 | | | NCPLX | ASMD LKR | IS/IP/CCS | 640 | l ő | 19 | | | | 0 | 1 | | | | 03/25/83 | | | 1 | | | NCPLX | ASMD LKR | | | | | 0.0 | 99.1 | 19 | - | 1 | | i . | S
Sec | | | | | | | | | IS/IP/CCS | 631 | ° | 23 | 0.0 | 23.8 | 23 | 0 | • | | M | PS | 03/31/72 | š | | l | | | NCPLX | ASMD LKR | IS/IP/CCS | 626 | 0 | 8 | 0.0 | 54.3 | 8 | 0 | _ | | 1 | PS | 12/31/71 | 1 | | 1 | | X-118 | NCPLX | SOUND | IS/IP/CCS | 347 | 0 | 27 | 0.0 | 89.1 | 27 | О | 0 | 347 | F | S | 11/17/80 | 12/19/79 | ı | i | | SIN | 3LE-SHELL | TANKS | TOTALS: | 7009 | 5 | 250 | 0.0 | 1205.7 | 255 | o | 241 | 6763 | | | | | • | + | | | | | | , | | | 0 | | 200 | · | | 0,50 | | | | 1 | | | TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS July 31, 1998 | | TANK | STATUS | | | | | LIO | UID VOLUI | ME | | SOLIDS | VOLUM | VOLUM | E DETERMIN | NATION | PHOTOS/ | VIDEOS | <u></u> | |------|------------|-----------|-------------|--------|--------|--------|--------|-----------|---------|---------|--------|---------|--------------|------------|----------|----------|---------|----------| | | | | | | | DRAIN- | | | DRAIN- | PUMP- | | | 1 | | | | | SEE | | | | | | | SUPER- | ABLE | PUMPED | | ABLE | ABLE | | | l | | | | | FOOTNOTE | | | | | STABIL/ | TOTAL | NATE | INTER- | THIS | TOTAL | FIGUID | LIQUID | | SALT | LIQUIDS | SOLIDS | SOLIDS | LAST | LAST |
FOR | | | WAST | | ISOLATION | WASTE | FIGUID | STIT. | MONTH | PUMPED | REMAIN | REMAIN | SLUDGE | CAKE | VOLUME | VOLUME | VOLUME | IN-TANK | IN-TANK | | | TAN | (MAT'L | INTEGRITY | STATUS | (Kgal) | (Kgal) | (Kgal) | (Kgal) | (Kgal) | (Kgal) | (Kg el) | (Kgal) | (Kg al) | METHOD | METHOD | UPDATE | PHOTO | VIDEO | CHANGES | | | | | | | | | | TV TA | NK FARM | STATUS | | | | | | | | | | TY-1 | O1 NCPLX | ASMO LKR | IS/IP/CCS | 118 | l 0 | 0 | 0.0 | 8.2 | 0 | 0 | 118 | 0 | l p | F | 04/28/82 | 08/22/89 | | 1 | | | D2 NCPLX | | IS/IP/CCS | 64 | ١٠ | 14 | 0.0 | 6.6 | 14 | 0 | ''0 | 64 | ا ا | FP | 06/28/82 | | | | | | 03 NCPLX | | IS/IP/CCS | 162 | 1 0 | 5 | 0.0 | 11.5 | 5 | 0 | 162 | o | P | FP | 07/09/82 | i | | 1 | | | 04 NCPLX | | IS/IP/CCS | 46 | 3 | 12 | 0.0 | 0.0 | 15 | 0 | 43 | ō | P | FP | 06/27/90 | • | | 1 | | | 05 NCPLX | | IS/IP/CCS | 231 | ٥ | 0 | 0.0 | 3.6 | 0 | 0 | 231 | o | Р | M | 04/28/82 | | | İ | | | 06 NCPLX | | IS/IP/CCS | 17 | ا
آ | 0 | 0.0 | 0.0 | 0 | 0 | 17 | o | P | M | 04/28/82 | | | Ì | | | | | ,,,,,,, | ,,, | ` | • | | | • | _ | 1 | • | | ••• | • | ,, | | | | 6 S# | IGLE-SHELI | TANKS | TOTALS: | 638 | 3 | 31 | 0.0 | 29.9 | 34 | 0 | 571 | 64 | | , | | | | <u> </u> | | | | | | | | | | | - | | | - | | | | | | | | | | | | | | | | U TAN | IK FARM | STATUS | | | | | | | | | | U-10 | 1 NCPLX | ASMD LKR | IS/IP | 25 | 3 | 0 | 0.0 | 0.0 | 3 | | 22 | 0 | P | MP | 04/28/82 | 06/19/79 | | 1 | | U-10 | 2 NCPLX | SOUND | /PI | 374 | 18 | 154 | 0.0 | 0.0 | 172 | 160 | 43 | 313 | P | MP | 04/28/82 | 06/08/89 | | | | U-10 | 3 NCPLX | SOUND | /PI | 468 | 13 | 207 | 0.0 | 0.0 | 220 | 205 | 32 | 423 | P | FP | 04/28/82 | 09/13/88 | | | | U-10 | 4 NCPLX | ASMD LKR | IS/IP | 122 | 0 | 7 | 0.0 | 0.0 | 7 | 0 | 122 | 0 | P | MP | 04/28/82 | 08/10/89 | | | | U-10 | 5 NCPLX | SOUND | /PI | 418 | 37 | 170 | 0.0 | 0.0 | 207 | 192 | 32 | 349 | FM | PS | 09/30/78 | 07/07/88 | - | | | U-10 | 6 NCPLX | SOUND | /PI | 226 | 15 | 87 | 0.0 | 0.0 | 102 | 85 | 26 | 185 | F | PS | 12/30/93 | 07/07/88 | | | | U-10 | 7 DSSF | SOUND | /Pt | 406 | 31 | 172 | 0.0 | 0.0 | 203 | 183 | 15 | 360 | F | s | 12/30/93 | 10/27/88 | | 1 | | U-10 | 8 NCPLX | SOUND | /PI | 468 | 24 | 202 | 0.0 | 0.0 | 226 | 209 | 29 | 415 | F | S | 12/30/93 | 09/12/84 | | | | U-10 | 9 NCPLX | SOUND | /PI | 463 | 19 | 197 | 0.0 | 0.0 | 216 | 205 | 48 | 396 | F | F | 06/30/96 | 07/07/88 | | | | U-11 | O NCPLX | ASMD LKR | IS/PI | 186 | 0 | 16 | 0.0 | 0.0 | 15 | 9 | 186 | 0 | М | M | 12/30/84 | 12/11/84 | | | | U-11 | 1 DSSF | SOUND | /PI | 329 | 0 | 146 | 0.0 | 0.0 | 146 | 129 | 26 | 303 | PS | FPS | 02/10/84 | 06/23/88 | | 1 | | U-11 | 2 NCPLX | ASMD LKR | IS/IP | 49 | 4 | 0 | 0.0 | 0.0 | 4 | 0 | 45 | 0 | Р | MP | 02/10/64 | 08/03/89 | | 1 | | U-20 | 1 NCPLX | SOUND | IS/IP | 5 | 1 | 0 | 0.0 | 0.0 | 1 | 0 | 4 | 0 | М | S | 08/15/79 | 08/08/89 | | | | U-20 | 2 NCPLX | SOUND | IS/IP | 5 | 1 | 0 | 0.0 | 0.0 | 1 | 0 | 4 | 0 | м | S | 08/15/79 | 08/08/89 | | | | U-20 | 3 NCPLX | SOUND | IS/IP | 3 | 1 | 0 | 0.0 | 0.0 | 1 | 0 | 2 | 0 | М | S | 08/15/79 | 06/13/89 | | | | U-20 | 4 NCPLX | SOUND | IS/IP | 3 | 1 | 0 | 0.0 | 0.0 | 1 | 0 | 2 | 0 | M | \$ | 08/15/79 | 06/13/89 | | | | 16 S | NGLE-SHE | L TANKS | TOTALS: | 3550 | 168 | 1357 | 0.0 | 0.0 | 1525 | 1377 | 638 | 2744 | | | | | | $\pm -$ | | | | | | | L | | | | | | I | | | | | | | I | | GRAI | ND TOTAL | | | 35338 | 558 | 6582 | 13.4 | 4437.5 | 7128 | 5754 | 11854 | 22926 | I | | | 1 | | | FOOTNOTES: TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS July 31, 1998 Total Weste is calculated as the sum of Sludge and Saltcake plus Supernate. The category "Interim Isolated" (II) was changed to "Intrusion Prevention" (IP) in June 1993. See section C. "Tank and Equipment Code and Status Definitions." Stabilization information from WHC-SD-RE-TI-178 SST STABILIZATION RECORD, latest revision, or SST Stabilization or Cognizant Engineer Note: In April 1998, saltwell operations were delayed because of a concern that water additions (such as those additions then being added to SX-104 to dilute the waste to ease pumping) might be considered waste additions and waste additions are now allowed into SSTs. On May 27, 1998, this was resolved, and stabilization activities utilizing small water additions resumed. #### (a) SX-104 Following information from Cognizant Engineer Pumping resumed July 23, 1998, with the dilution system operating to provide 100% dilution of the waste being transferred to prevent plugging. Pumping continued until July 26, when the system was shut down to pump 244-S to SY-102. Pumping resumed July 29. Total Waste: 614 Kgal Supernate: 0 Kgal Drainable interstitial: 196.7 Kgal Pumped this month: 3.3. Kgal Total Pumped: 117.3 Kgal Drainable Liquid Remaining: 196.7 Pumpable Liquid Remaining: 190.7 Kgal Sludge: 136 Kgal Saltcake: 478 Kgal #### (b) T-104 Following information from Cognizant Engineer Pumping resumed June 7, 1998. Total Waste: 340 Kgal Supernate: 0 Kgal Drainable interstitial: 60 Kgal Pumped this month: 4.2 Kgal Total Pumped: 127.4 Kgal Drainable Liquid Remaining: 60 Kgal Pumpable Liquid Remaining: 57 Kgat Siudge: 340 Kgal Saltcake: 0 Kgal Actual volume of liquid remaining to be pumped is still a rough estimate. Volumes will be corrected as porosity data becomes available with continued pumping. 1369 gal of raw water was used during July pumping operations (does not include 508 gal flush on June 24). A delta of 1814 gal occurred on totalizer between June 22 and July 8. # UNC-010-174 ### TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS July 31, 1998 #### FOOTNOTES: (c) T-110 Following information from Cognizant Engineer Pumping began May 21, 1997 Total Waste: 361 Kgal Supernate: 0 Kgal Drainable Interstitial: 20.3 Kgal Pumped this month: 5.9 Kgal Total Pumped: 23.2 Kgal Drainable Liquid Remaining: 20.3 Kgal Pumpable Liquid Remaining: 17.3 Kgal Słudge: 361 Kgal Sałtcake: 0 Kgal Actual volume of liquid remaining to be pumped is still a rough estimate at this time. Volumes will be corrected as porosity data becomes available with continued pumping. 2637 gal of raw water was used during July for T-110 pumping operations. This page intentionally left blank. 45 •• { #### APPENDIX F ### PERFORMANCE SUMMARY # HNF-EP-0182-124 ### TABLE F-1. PERFORMANCE SUMMARY (Sheet 1 of 2) WASTE VOLUMES (Kgallons) July 31, 1998 ### INCREASES/DECREASES IN WASTE VOLUMES STORED IN DOUBLE-SHELL TANKS ### CUMULATIVE EVAPORATION - 1950 TO PRESENT WASTE VOLUME REDUCTION | STORED IN DOUB | LE-SHELL TANKS | | WASTE VC | LUME REDUCTION | | |--------------------------|----------------|----------|----------------------------------|--------------------|-------| | | THIS | FY1998 | FACILITY | | | | SOURCE | <u>MONTH</u> | TO DATE | 242-B EVAPORATOR (10) | | 7172 | | B PLANT | 0 | 37 | 242-T EVAPORATOR (1950's) (1 | 0) | 9181 | | PUREX TOTAL (1) | 0 | 0 | IN-TANK SOLIDIFICATION UNIT 1 | (10) | 11876 | | PFP (1) | 0 | 0 | IN-TANK SOLIDIFICATION UNIT 2 | (10) | 15295 | | T PLANT (1) | o | 0 | IN-TANK SOLID. UNIT 1 & 2 (10) | | 7965 | | S PLANT (1) | 3 | 6 | (after conversion of Unit 1 to a | cooler for Unit 2) | 8833 | | 300 AREAS (1) | 15 | 15 | 242-T (Modified) (10) | | 24471 | | 400 AREAS (1) | 0 | 0 | 242-S EVAPORATOR (10) | | 41983 | | SULFATE WASTE -100 N (2) | O | 0 | 242-A EVAPORATOR (11) | 7 | 73689 | | TRAINING/X-SITE (9) | 0 | 40 | 242-A Evaporator was restart | nd April 15, 1994, | | | TANK FARMS (6) | 15 | 43 | after having been shut down s | ince April 1989. | | | SALTWELL LIQUID (8) | 28 | 35 | Total waste reduction sinc | e restart: | 9486 | | | | | Campaign 94-1 | 2417 Kgal | | | OTHER GAINS | 10 | 206 | Campaign 94-2 | 2787 Kgal | | | Slurry increase (3) | 3 | | Campaign 95-1 | 2161 Kgal | * | | Condensate | 6 | | Campaign 96-1 | 1117 Kgal | | | Instrument change (7) | o | | Campaign 97-1 | 351 Kgal | | | Unknown (5) | 1 | | Campaign 97-2 | 653 Kgal | | | OTHER LOSSES | -14 | -251 | | | | | Slurry decrease (3) | 0 | |]] | | | | Evaporation (4) | -5 | | | | | | Instrument change (7) | 0 | | 1 1 | | | | Unknown (5) | -9 | | | | | | EVAPORATED | 0 | o | 1 1 | | | | GROUTED | 0 | <u> </u> | | | | | TOTAL | 57 | 131 |] | | | #### HNF-EP-0182-124 ### TABLE F-1. PERFORMANCE SUMMARY (Sheet 2 of 2) #### Footnotes: #### INCREASES/DECREASES IN WASTE VOLUMES - (1) Including flush - (2) Sulfate waste is generated from ion exchange backflushing and sand filter clean out, resulting in sulfate waste. - (3) Slurry increase/growth is caused by gas generation within the waste. - (4) Aging waste tanks - (5) Unknown waste gains or losses - (6) Includes Tank Farms miscellaneous flushes - (7) Liquid level measurement instrument changes from the automatic FIC to manual tape (and vice versa) result in unusual gains or losses because the manual tape may rest on an uneven crust surface giving a different reading from that of the automatic FIC. - (8) Results from pumping of single-shell tanks to double-shell tanks. - (9) Tracks waste being sent to the double-shell tanks from the "Precampaign Training Run." Evaporator procedures require a training run at least once per year. This also includes pressure testing and flushing of cross-site transfer lines. #### WASTE VOLUME REDUCTION - (10) Currently inoperative. - Currently operative. The 242-A Evaporator-Crystallizer was started up March 1977, and shut down April 1989 because of regulatory issues, and remained shut down for subsequent upgrading. This evaporator operates under a vacuum, employing evaporative concentration with subsequent crystallization and precipitation of salt crystals (forming saltcake). The evaporator was restarted on April 15, 1994. ### TABLE F-2. SUMMARY OF WASTE TRANSACTIONS IN THE DOUBLE-SHELL TANKS ### SUMMARY OF WASTE TRANSACTIONS IN THE DOUBLE-SHELL TANK (DST) SYSTEM FOR JULY 1998: ALL VOLUMES IN KGALS - The DST system received waste transfers/additions from 222S (labs), 340 Facility, SWL and Tank Farms in July 1998.
- -There was a net change of +57 Kgals in the DST system for July 1998. - The total DST inventory as of July 31, 1998 was 18,484 Kgals. - There was no Saltwell Liquid (SWL) pumped to the East Area DSTs in July. - There was 28 Kgais of Saltwell Liquid (SWL) pumped to the West Area DSTs (102-SY) in July. | | JULY 1998 DST WASTE RECEIPTS | | | | | | | | | | | | |---|------------------------------|-----------------|--------------|-----------------|----------|--|--|--|--|--|--|--| | FACILITY GENERATIONS OTHER GAINS ASSOCIATED WITH OTHER LOSSES ASSOCIATED WI | | | | | | | | | | | | | | TANK FARMS | +15 Kgal (2AY, 2AW, 6AP) | SLURRY | +3 Kgal | SLURRY | -0 Kgal | | | | | | | | | 222S (Labs) | +3 Kgal (2SY) | CONDENSATE | +6 Kgal | CONDENSATE | -5 Kgai | | | | | | | | | SWL (West) | +28 Kgal (2SY) | INSTRUMENTATION | +0 Kgal | INSTRUMENTATION | -0 Kgal | | | | | | | | | 300 AREA | +15 Kgal (6AP) | UNKNOWN | +1 Kgal | UNKNOWN | -9 Kgal | | | | | | | | | YOUAL | +81 Kgal | | SERVICE KRAI | 7074 | -14 Kgal | | | | | | | | | | ACTUAL DST
WASTE RECEIPTS | PROJECTED DST
WASTE RECEIPTS | MISC. DST
CHANGES (+/-) | WVR | NET DST
CHANGE | TOTAL DST
VOLUME | |-------|------------------------------|---------------------------------|----------------------------|-----|-------------------|---------------------| | OCT97 | 0 | 64 | -31 | 0 | -31 | 18322 | | NOV97 | o | 77 | 2 | 0 | 2 | 18324 | | DEC97 | 0 | 74 | -27 | 0 | -27 | 18297 | | JAN98 | 4 | 74 | -37 | 0 | -33 | 18264 | | FEB98 | 7 | 74 | 9 | 0 | +16 | 18280 | | MAR98 | 22 | 74 | -7 | 0 | +15 | 18295 | | APR98 | 9 | | 32 | 0 | +41 | 18336 | | MAY98 | 14 | | 3 | 0 | +17 | 18353 | | JUN98 | 59 | | 15 | 0 | +74 | 18427 | | JUL98 | 61 | | -4 | 0 | +57 | 18484 | | 4 | | | | 0 | | 1.0.00 | | SEP98 | | | | 0 | | | NOTE: Shaded/boilded numbers in the "PROJECTED DST WASTE RECEIPTS" column were updated in April 1998. FIGURE F-1. COMPARISON OF WASTE VOLUME GENERATIONS FOR HANFORD FACILITIES (All volumes in Kgals) This page intentionally left blank •• (# APPENDIX G # MISCELLANEOUS UNDERGROUND STORAGE TANKS AND SPECIAL SURVEILLANCE FACILITIES # TABLE G-1. EAST AND WEST AREA MISCELLANEOUS UNDERGROUND STORAGE TANKS AND SPECIAL SURVEILLANCE FACILITIES ACTIVE - still running transfers through the associated diversion boxes or pipeline encasements July 31, 1998 | | EACILITY | LOCATION | PURPOSE (receives waste from:) | (Gallons) | MONITORED BY | <u>REMARKS</u> | |---|--------------------|-------------------|---------------------------------------|-----------|--------------------|---| | | EAST AREA | | | | | | | | 241-A-302-A | A Farm | A-151 DB | 968 | SACS/ENRAF | Foamed over Catch Tank pump pit & div. box to prevent intrusion | | | 241-ER-311 | B Plant | ER-151, ER-152 DB | 5591 | SACS/CASS/FIC | Increase from drain off from Diversion Box | | | 241-AX-152 | AX Farm | AX-152 DB | 5338 | SACS/MT | Increase from rain/snow melt | | | 241-AZ-151 | AZ Farm | AZ-702 condensate | 2636 | SACS/CASS/FIC | Volume changes daily - pumped to AZ-102 (7/24) | | | 241-AZ-154 | AZ Farm | | 25 | SACS/CASS/MT | | | | 244-BX-TK/SMP | BX Complex | DCRT - Receives from several farms | 22835 | SACS/MANUALLY | Using Manuel Tape for tank | | | 244-A-TK/SMP | A Complex | DCRT - Receives from several farms | 7454 | MCS | WTF | | | A-350 | A Farm | Collects drainage | 450 | SACS/WTF | WTF, increase from rain/snow melt - pumped 7/15 | | כ | AR-204 | AY farm | RR Cars during transfer to rec. tanks | 200 | DIP TUBE | Alarms on CASS | | J | A-417 | A Farm | | 11757 | SACS/DIP TUBE | WTF - pumped 4/98 | | | CR-003-TK/SUMP | C Farm | DCRT | 4224 | MT/ZIP CORD | Zip cord in sump O/S 3/11/96, water | | | | | | | | intrusion, 1/98 | | | WEST AREA | | | | | | | | 241-TX-302-C | TX Farm | TX-154 DB | 439 | SACS/CASS/ENRAF | | | | 241-U-301-B | U Ferm | U-151, U-152, U-153, U-252 DB | 8156 | SACS/CASS/ENRAF | Returned to service 12/30/93 | | | 241-UX-302-A | U Plant | UX-154 DB | 1651 | SACS/CASS/ENRAF | | | | 241-S-304 | S Farm | S-151 DB | 0 | SACS/CASS/ENRAF | Replaced S-302-A, 10/91; ENRAF installed 7/98 | | | | | | | | Sump not alarming. ENRAF O/S | | | 244-S-TK/SMP | S Farm | DCRT - Receives from several farms | 4805 | SACS/MANUALLY | CWF | | | 244-TX-TK/SMP | TX Farm | DCRT - Receives from several ferms | 16328 | SACS/MANUALLY | MT | | | Vent Station Catch | Tank | Cross Country Transfer Line | 329 | SACS/MANUALLY | MT | | | | | Total Active Facilities 18 | LEGEND: | DB - Diversion Box | | Note: Readings may be taken manually or automatically by FIC (or ENRAF). All FICs and manual ENRAFs connected to CASS. All tanks on CASS tellifier auto or manual are also on the SACS database. If automatic connections to CASS are broken, readings are taken manually. Manual readings include readings taken by manual tape, manual FIC, or manual readings of automatic FIC (if CASS is printing *0*). Readings may also be taken by zip cord, which are acceptable but less accurate. | U 1220 T 022 C 222 C 222 C 200 C 0 C 0 C 0 C 222 C 2 C | | |--|--| | LEGEND: DB - Diversion | | | | | | E | | | | is-Contained Receiver Tank | | | | | | | | | | | TK + Tark | | | *************************************** | | | | | | SMP - Sums | | | | | | Committee of the commit | | | 000000000000000000000000000000000000 | rtrument Corporation measurement device | | | | | | | | \$1000000000000000000000000000000000000 | haw fretrument measurement device | | The second secon | ateria de la desta de la companya d | | | | | MFIC - Marke | | | CONCERNION CONTRACTOR OF THE PARTY PA | | | \$0.000.000.000.000.000.000.000.000.000. | | | MT - Maruni | | | 20000000000000000000000000000000000000 | 1 | | | | | ************************************** | t Factor/SpG # Corrected Weight Factor | | BERGERORIO CONTROLO CONTROLO DE LA LIBRO DELLO DE LA LIBRO DELLO D | | | | | | | | | 60000000000000000000000000000000000000 | xiler Automated Survellance System | | | | | | Mance Autometed Control System | | \$2000000000000000000000000000000000000 | | | | | | | | | 200000000000000000000000000000000000000 | er and Control System | | | | | O/8 - Out of i | | | 70000000000000000000000000000000000000 | 58 PROB | | 200.000 000 000 000 000 000 000 000 000 | 7. T. | | | | | | ace Lavel Measuring Device | | ************************************** | | #### **MONITORED EACILITY** RECEIVED WASTE FROM: LOCATION BY REMARKS (Gallons) 216-BY-201 BY Farm **TBP Waste Line** Unknown NM (216-BY) 241-A-302-B A Farm A-152 DB 5681 CASS/MT Isolated 1985, Project B-138 Interim Stabilized 1990, Rain intrusion 241-AX-151 N of PUREX PUREX Unknown NM Isolated 1985 241-B-301-B B Farm B-151, B-152, B-153, B-252 DB Isolated 1985 (1) 22250 NM 241-B-302-B 4930 NM Isolated 1985 (1) B Farm B-154 DB 241-BX-302-A **BX Farm** BR-152, BX-153, BXR-152, BYR-152 DB 840 NM Isolated 1985 (1) 241-BX-302-B **BX Farm BX-154 DB** 1040 NM Isolated 1985 (1) 241-BX-302-C **BX Farm** BX-155 DB 870 NM Isolated 1985 (1F 241-C-301-C C-151, C-152, C-153, C-252 DB Isolated 1985 (1) C Farm 10470 NM 241-CX-70 Hot Semi-Transfer lines NM Isolated, Decommission Project, Unknown 241-CX-72 Works Transfer lines 650 NM See Dwg H-2-95-501, 2/5/87 241-ER-311A SW B Plant **ER-151 DB** NM Isolated Unknown 244-AR VAULT A Complex Between farms & B-Plant Unknown NM Not actively being used. Systems activated for final clean-out. 244-BXR-TK/SMP-001 Interim Stabilization 1985 (1) BX Farm Transfer lines 7200 MM 244-BXR-TK/SMP-002 BX Farm Transfer lines 2180 NM Interim Stabilization 1985 (1) 244-BXR-TK/SMP-003 BX Farm Transfer lines 1810 NM Interim Stabilization 1985 (1) 244-BXR-TK/SMP-011 BX Farm Transfer lines 7100 NM Interim Stabilization 1985 (1) 361-B-TANK **B** Plant **Drainage from
B-Plant** Unknown NM Interim Stabilization 1985 (1) | 4 | | | | | | | | |
 |
_ | |-----|------------|---------|------|-----|-------|------|----------|--------|--------|--------| | - 1 | Total East | A 1 | ~ | | | تضاه | | |
40 |
:: | | - 1 | IUIDI E881 | wica II | 1000 | IVC | IBÇIN | (IC: | 5 | : :::. |
10 |
:: | | | | | | | | | | | | - | LEGEND: DB - Diversion Box DCRT - Double-Contained Receiver Tank MT - Manual Tape CASS - Computer Automated Survellance System TK - Tank SMP - Sump R - Usually denotes replacement NM - Not Monitored # TABLE G-3. WEST AREA INACTIVE MISC. UNDERGROUND STORAGE TANKS AND SPECIAL SURV. FACILITIES INACTIVE - no longer receiving waste transfers July 31, 1998 ## MONITORED | <i>EACILITY</i> | LOCATION | RECEIVED WASTE FROM: | (Gallons) | BY | <u>REMARKS</u> | |--------------------|---------------|------------------------------------|-----------------|------------|--| | 216-TY-201 | E. of TY Farm | Supernate from T-112 | Unknown | NM | Isolated | | 231-W-151-001 | N. of Z Plant | 231-Z Floor drains | Unknown | NM | Inactive, last data 1974 | | 231-W-151-002 | N. of Z Plant | 231-Z Floor drains | Unknown | NM | Inactive, last data 1974 | | 240-S-302 | S Farm | 240-S-151 DB | 8563 | CASS/ENRAF | Assumed Leaker EPDA 85-04 | | 241-S-302-A | S Farm | 241-S-151 DB | 0 | CASS/FIC ' | Assumed Leaker TF-EFS-90-042 | | | | | * FIC in Intrus | sion mode | Partially filled with grout 2/91, determined | | | | | | | still assumed leaker after leak test | | 241-S-302-B | S Farm | S Encasements | Unknown | NM | Isolated 1985 (1) | | 241-SX-302 | SX Farm | SX-151 DB, 151 TB | Unknown | NM | Isolated 1987 | | 241-SX-304 | SX Ferm | SX-152 Transfer Box, SX-151 DB | Unknown | NM | Isolated 1985 (1) | | 241-T-301 | T Farm | DB T-151, -151, -153, -252 | Unknown | NM | Isolated 1985 (241-T-301B) | | 241-TX-302 | TX Farm | TX-153 DB | Unknown | · NM | Isolated 1985 (1) | | 241-TX-302-X-B | TX Farm | TX Encesements | Unknown | NM | Isolated 1985 (1) : | | 241-TX-302-B | TX Farm | TX-155 DB | 1600 | CASS/MT | New MT installed 7/16/93 | | 241-TX-302B(R) | E. of TX Farm | TX-155 DB | Unknown | NM | Isolated | | 241-TY-302-A | TY Farm | TX-153 DB | Unknown | NM | Isolated 1985 (1) | | 241-TY-302-B | TY Farm | TY Encasements | Unknown | NM | Isolated 1985 (1) | | 241-Z-8 | E. of Z Plant | Recuplex waste | Unknown | NM | Isolated, 1974, 1975 | | 242-T-135 | T Evaporator | T Evaporator | Unknown | NM | isolated | | 242-TA-R1 | T Evaporator | Z Plant waste | Unknown | NM | Isolated | | 243-S-TK-1 | N. of S Farm | Pers. Decon. Facility | Unknown | NM | Isolated | | 244-U-TK/SMP | ⊍ Farm | DCRT - Receives from several farms | Unknown | NM | Not yet in use | | 244-TXR VAULT | TX Farm | Transfer lines | Unknown | NM | Interim Stabilized, MT removed 1984 (1) | | 244-TXR-TK/SMP-001 | TX Farm | Transfer lines | Unknown | NM | Interim Stabilized, MT removed 1984 (1) | | 244-TXR-TK/SMP-002 | TX Farm | Transfer lines | Unknown | NM | Interim Stabilized, MT removed 1984 (1) | | 244-TXR-TK/SMP-003 | TX Farm | Transfer lines | Unknown | NM | Interim Stabilized, MT removed 1984 (1) | | 270-W | SE of U Plant | Condensate from U-221 | Unknown | NM | Isolated 1970 | | 361-T-TANK | T Plant | Drainage from T-Plant | Unknown | NM | Isolated 1985 (1) | | 361-U-TANK | U Plant | Drainage from U-Plant | Unknown | NM | Interim Stabilzed, MT removed 1984 (1) | # Total West Area inactive facilities 27 LEGEND: DB - Diversion Box, TB - Transfer Box DCRT - Double-Contained Receiver Tank TK - Tank SMF - Sump R - Unitedly denotes replacement FIC - Surface Level Mentioning Device MT - Manual Tape O/B - Out of Service CASS - Computer Automated Surveillance System NM - Not Monitored ENRAF - Surface Level Monitoring Device 9 # APPENDIX H # LEAK VOLUME ESTIMATES TABLE H-1. SINGLE-SHELL TANK LEAK VOLUME ESTIMATES (Sheet 1 of 5) July 31, 1998 | Tank No. | | | Date Declared | July 31 | Associated | Interim | | _ | |--|--|---|---------------
--|---------------------------------------|---------------|------|----------------| | 241-A-103 1987 500 to 2500 (9) | | | Confirmed or | Volume (2)(4) | KiloCuries | Stabilized | | | | 241-A-104 1975 | | | | | <u>137.cs.(10)</u> | | | ` | | 241-A2-105 (1) 1963 10000 to 277000 (5) 07/78 1991 (6),(a) 277000 (2) 1985 (1) 277000 (2) 1985 (1) 277000 (2) 1985 (1) 277000 (2) 1985 (1) 241-A2-105 (1) 1985 (1) 19 | | | | | 0.8 to 1.8 (a) | | | (j)
(a) (a) | | 241-AX-102 1988 3000 (9) 0.9/88 1989 (p) (241-AX-104 1977 3-0.7) 0.9/81 1989 (p) (241-AX-104 1977 3-0.7) 0.9/81 1989 (p) (241-AX-104 1977 3-0.7) 0.9/81 1989 (p) (241-AX-104 1977 3-0.7) 0.9/81 1989 (p) (241-AX-104 1978 3-0.7) 0.9/85 1986 (d) (141-AX-104 1978 3-0.7) 0.9/85 1988 (d) (141-AX-104 1978 3-0.7) 0.9/85 1988 (d) (141-AX-104 1978 3-0.7) 0.9/85 1988 (d) (141-AX-104 1978 3-0.7) 0.9/85 1989 (p) (p) (141-AX-104 1978 3-0.7) 0.9/85 1989 (p) | | (1) | 1963 | 10000 to | | | | | | 241-8-101 1974 | | | | | | | | | | 241-B-101 1974 '(7) 03/81 1988 (g) 241-B-103 1978 0(7) 02/85 1989 (g) 241-B-106 1978 0.00 (7) 12/84 1989 (g) 241-B-107 1981 10000 (9) 03/85 1986 (g), (1), (1) 241-B-110 1981 10000 (9) 03/85 1986 (g), (1), (1) 241-B-111 1978 2000 0.58/85 1989 (g) 241-B-201 1980 1200 (9) 08/81 1984 (e), (1) 241-B-201 1980 1200 (9) 08/81 1984 (e), (1) 241-B-201 1980 1200 (9) 08/81 1984 (e), (1) 241-B-201 1980 1200 (9) 08/81 1986 (d) 241-B-204 1784 2000 (9) 08/84 1989 (g) 241-B-204 1784 2500 0.5 (1) 07/78 1986 (e) 1784 2500 0.5 (1) 07/78 1986 (e) 241-B-204 1784 1784 2500 0.5 (1) 07/79 1986 (e) 241-B-204 1784 1784 1784 1784 1784 1784 1784 178 | | | | | | | | | | 241-B-105 1978 | | | | (7) | | | | | | 241-B-107 1980 8000 (9) 03/85 1986 (d) (d) 241-B-110 1981 10000 (9) 03/85 1986 (d) (d) 241-B-111 1978 20-(7) 06/85 1989 (q) (d) 241-B-111 1978 2000 (9) 05/85 1989 (q) (d) 241-B-101 1978 2000 (9) 05/85 1989 (q) (d) 241-B-203 1983 3000 (9) 06/84 1986 (d) (d) (d) 241-B-203 1983 3000 (9) 06/84 1989 (q) 241-B-203 1983 400 (9) 06/84 1989 (q) 241-B-203 1983 5000 (9) 05/85 1989 (q) 241-B-203 1983 5000 (9) 05/85 1989 (q) 241-B-203 1983 5000 (9) 05/85 1989 (q) 241-B-203 1983 5000 (9) 05/85 1989 (q) 241-B-203 1981 5000 1971 70000 50 (1) 11/78 1986 (d) 241-B-203 1971 70000 50 (1) 11/78 1986 (d) 241-B-203 1971 70000 50 (1) 11/78 1986 (d) 241-B-203 1971 70000 50 (1) 11/78 1986 (d) 241-B-203 1973 05000 1971 11/78 1986 (d) 241-B-203 1973 05000 1971 11/78 1989 (q) 241-B-203 1973 05000 1971 11/78 1989 (q) 241-B-203 1973 05000 1971 11/78 1989 (q) 241-B-203 1972 05000 1971 11/78 1989 (q) 241-B-203 1973 05000 1971 11/78 1989 (q) 241-B-203 1972 05000 1971 11/78 1989 (q) 241-B-203 1972 05000 1971 11/78 1989 (q) 241-B-203 1972 05000 1971 11/78 1989 (q) 241-B-203 1972 05000 1971 11/78 1989 (q) 241-B-203 1972 05000 1972 1989 (q) 241-B-203 1972 05000 1972 1989 (q) 241-B-203 1972 05000 1972 1989 (q) 241-B-203 1972 05000 1972 1989 (q) 241-B-203 1972 05000 1972 1989 (q) 241-B-203 1972 05000 1972 1989 (q) 241-B-203 1989 1972 05000 1972 1989 (q) 241-B-203 1989 1972 05000 1972 1989 (q) 241-B-203 1989 1972 05000 1972 1989 (q) 241-B-203 1989 1972 05000 1972 1989 (q) 241-B-203 1989 1989 1989 1989 1989 1989 1989 198 | 241-B-103 | | 1978 | ` (7) | | 02/85 | 1989 | (ĝ) | | 241-B-110 1981 10000 (9) 03/85 1986 (d) 241-B-111 1978 2-(7) 06/85 1989 (g) 241-B-112 1978 2000 05/85 1989 (g) 241-B-203 1980 1200 19 06/85 1989 (g) 241-B-203 1980 300 06/81 1984 (d),(f) 241-B-204 1984 400 (9) 06/84 1982 (d) 241-B-204 1984 400 (9) 06/85 1989 (g) 241-B-204 1987 70000 50 (1) 17/8 1988 (d) 241-B-205 1971 70000 50 (1) 17/8 1988 (d) 241-B-206 1974 2500 0.5 (i) 17/8 1988 (d) 241-B-206 1974 2500 1974 2500 10/79 1988 (d) 241-B-206 1984(7) 0.6 (6) 1985 1989 (g) 241-B-206 1984(7) 0.7 (6) 1983 (e) 241-B-208 1972(7) 241-C-101 1980 20000 (9)(11) 11/83 1986 (d) 241-C-203 (f) 1988 5500 (g) 0.3 (6) 1987 (g) 241-C-203 (f) 1988 5500 (g) 0.3 (6) 1987 (g) 241-S-204 1988 200 (g) 0.6 (g) 1987 (g) 241-S-204 1989 200 (g) 0.6 (g) 0.6 (g) 1987 (g) 241-S-204 1989 200 (g) 0.6 (g) 0.7 (g) 1989 (g) 241-S-204 1989 200 (g) 0.6 (g) 0.7 (g) 1989 (g) 241-S-204 1989 200 (g) 0.6 (g) 0.7 (g) 1989 (g) 241-S-204 1989 200 (g) 0.6 (g) 0.7 (g) 1989 (g) 241-S-204 1989 200 (g) 0.6 (g) 0.7 (g) 1989 (g) 241-S-204 1989 200 (g) 0.6 (g) 0.7 (g) 1989 (g) 241-S-204 1989 200 (g) 0.6 (g) 0.7 (g) 1989 (g) 241-S-204 1989 200 (g) 0.6 (g) 0.7 (g) 1989 (g) 241-S-204 1989 200 (g) 0.7 (g) 0.7 (g) 1989 (g) 241-S-204 1989 200 (g) 0.7 (g) 0.7 (g) 1989 (g) 241-S-204 1989 200 (g) 0.7 (g) 0.7 (g) 1989 (g) 241-S-204 1989 200 (g) 0.7 (g) 0.7 (g) 0.7 (g) 1989 (g) 241-S-204 1989 200 (g) 0.7 (g) 0.7 (g) 1989 (g) 241-S-204 1989 200 (g) 0.7 (g) 0.7 (g) 1989 (g) 241-S-204 1989 200 (g) 0.7 (g) 0.7 (g) 1989 (g) 241-S-204 1989 200 (g) 0.7 | | | | - (7)
8000 (9) | | | | | | 241-B-201 1980 1200 (9) 06/84 1984 (e).(f) 241-B-203 1983 300 (9) 06/84 1989 (g) 241-B-204 1984 400 (9) 06/84 1989 (g) 241-B-X-101 1972 | | | | | | | | | | 241-B-201 1980 1200 (9) 06/84 1986 (d) (4) 241-B-203 1983 300 (9) 06/84 1986 (d) (9) 06/84 1986 (d) (241-B-204 1984 400 (9) 06/84 1989 (g) (9) 241-B-204 1984 400 (9) 06/84 1989 (g) (9) 241-B-204 1984 400 (9) 06/84 1989 (g) (9) 241-B-204 1987 70000 50 (1) 17/8 1986 (d) (9) 241-B-204 1987 70000 50 (1) 17/8 1986 (d) (9) 241-B-204 1987 (d) 1988 (d) 241-B-204 1988 (d) 241-B-204 1988 (d) 241-B-204 | | | | | | | | | | 241-B-203 1983 300 (9) 06/84 1988 (d) 241-B-204 1984 400 (9) 06/84 1988 (d) (2) 241-B-204 1984 400 (9) 06/84 1989 (p) 241-B-201 1972 (7) 0.9/78 1989 (p) 241-B-201 1971 70000 50 (f) 0.7/79 1986 (d) 241-B-201 1971 70000 50 (f) 0.7/79 1986 (d) 241-B-201 1971 70000 10.5 (f) 0.5 (f) 0.7/79 1986 (d) 241-B-201 1971 70000 10.5 (f) 0.5 (f) 0.7/79 1986 (d) 241-B-201 1973 70 0.55/6 1989 (g) (g) (f) 1971 1984 (14) (7) 0.55/6 1989 (g) (g) (f) 1971 1984 (14) (7) 0.55/6 1989 (g) (g) (f) 1984 15100 (g) 0.7/79 1989 (g) 241-B-201 1984 15100 (g) 0.7/79 1989 (g) 241-B-201 1984 15100 (g) 0.7/79 1989 (g) 241-B-201 1984 15100 (g) 0.7/79 1989 (g) 241-B-201 1984 2000 (g) 11 1883 1986 (d) 241-C-110 1980 20000 (g) 0.5/95 1989 (g) 241-C-101 1980 20000
(g) 0.5/95 1989 (g) 241-C-101 1980 2000 (g) 0.5/95 1989 (g) 241-C-101 (5) 1988 5500 (g) 0.3/82 1987 (f) 1924-C-202 (5) 1988 3500 (g) 0.8/82 1987 (f) 1924-C-204 (5) 1988 350 0.9/82 1987 (f) 1984 241-S-107 1986 2400 (g) 0.8/82 1987 (g) 241-S-104 1986 24000 (g) 0.8/82 1987 (g) 241-S-104 1988 (5000 (g) 0.8/82 1989 (g) 241-S-104 19 | | | | | | | | | | 241-BX-101 1972 | 241-B-203 | | 1983 | 300 (9) | | 06/84 | 1986 | (d) | | 241-BX-102 1971 70000 50 (i) 1178 1986 (d) 241-BX-108 1974 2500 0.5 (ii) 0778 1988 (d) 241-BX-111 1984 (14) (7) 0.685 1989 (g) (g), (r) 241-BX-111 1984 (14) (7) 0.685 1989 (g) (g), (r) 241-BX-110 1984 (7) 1.7 (r) 1.8 | | | | | | | | | | 241-8X-108 1974 2500 0.5 (l) 07779 1986 (d) 241-8X-110 1984 (14)(7) 0.8/85 1989 (g) | | | | | 50.0 | | | | | 241-8Y-103 1973 | 241-BX-108 | | 1974 | 2500 | 0.5 (ii) | | | | | 241-BY-105 | 241-BX-110 | | | | | | | | | 241-8Y-105 1984 | | | | | | | | | | 241-8Y-106 1984 | 241-BY-105 | | | · - - | | | | (a)
(a) | | 241-EV-108 | | | | | | | | (g) | | 241-C-101 | | | | | | | | (g)
(a) | | 241-C-110 | | | | |) | | | | | 241-C-201 (5) 1988 5500 (9) 03/84 1989 (g) 241-C-202 (5) 1988 450 08/81 1987 (f) 241-C-203 1984 400 (9) 03/82 1987 (f) 241-C-203 1984 400 (9) 03/82 1987 (f) 241-C-204 (5) 1988 350 09/82 1987 (f) 241-S-104 1988 2400 (9) 12/84 1989 (g) 241-S-104 1988 8000 (9) N/A 1988 (k) 241-S-104 1988 8000 (9) N/A 1988 (k) 241-S-107 1964 <5000 17 to 140 (m)(q) 08/79 1983 (a) (a) 241-S-108 (6) 1965 35000 2400 to 17 to 140 (m)(q) 08/79 1983 (a) (m) (q) 241-S-109 (6) 1965 <10000 5500 09/82 1987 (f) (m) (q) 241-S-111 1974 500 to 2000 40 (f) 07/79 1986 (d) (q) 241-S-111 1974 500 to 2000 40 (f) 07/79 1986 (d) (q) 241-S-113 1962 15000 80 (f) 07/79 1986 (d) (q) 241-S-113 1962 15000 241-S-113 1962 15000 241-S-113 1962 15000 241-S-113 1962 (f) 09/79 1989 (g) 241-T-103 1974 (1000 (9) 11/83 1989 (g) 241-T-103 1974 (1000 (9) 09/78 1992 (o) 241-T-103 1974 (1000 (9) 09/78 1989 (g) 241-T-108 1973 115000 (9) 04/93 1992 (p) 241-T-108 1974 (1000 (9) 11/83 1989 (g) 241-T-108 1974 (1000 (9) 11/83 1989 (g) 241-T-109 241-T-111 1979,1984 (13) (1000 (8) 02/95 1994 (f) (f) (f) 241-T-111 1979,1984 (13) (1000 (8) 02/95 1998 (g) (1000 (9) 11/83 1989 | | | | 2000 | • | 05/95 | 1989 | (g) | | 241-C-202 (5) 1988 | | (5) | | | | | | (g) | | 241-C-203 | 241-C-202 | | 1988 | 450 | | | | (i) | | 241-S-104 | | (E) | | | | | | (d) | | 241-SX-104 1988 6000 (9) | | (0) | | · · · · · · · · · · · · · · · · · · · | | | | | | 241-SX-107 1986 | | | | | | | | | | 241-SX-108 (6) 1962 | 241-SX-107 | | 1964 | | | 10/79 | | | | 241-SX-109 (6) 1965 | 241-SX-108 | (6) | 1962 | | 17 to 140 (m)(c | 08/79 | 1991 | | | 241-SX-110 | 241-SX-109 | (6) | 1965 | | <40 (n) | 05/81 | 1992 | (n) | | 241-SX-112 1989 30000 40 (f) 07/79 1986 (d) 241-SX-113 1962 15000 8 (f) 11/78 1986 (d) 241-SX-114 1972 -(7) 07/79 1989 (g) 241-SX-115 1965 50000 21 (o) 09/78 1992 (o) 241-T-101 1992 7500 (g) 04/93 1992 (p) 241-T-103 1974 (1000 (g) 11/83 1989 (g) 241-T-106 1973 115000 (g) 40 (f) 08/81 1986 (d) 241-T-107 1984 -(7) 05/96 1989 (g) 241-T-108 1974 (1000 (g) 11/78 1980 (f) 241-T-109 1974 (1000 (g) 11/78 1980 (f) 241-T-109 1974 (1000 (g) 11/78 1980 (f) 241-T-111 1979, 1994 (13) (1000 (g) 02/95 1994 (f)(t) 241-T-111 1979, 1994 (13) (1000 (g) 02/95 1994 (f)(t) 241-TX-105 1977 -(7) 04/83 1989 (g) 241-TX-107 (6) 1984 2500 10/79 1986 (d) 241-TX-110 1977 -(7) 04/83 1989 (g) 241-TX-114 1974 -(7) 04/83 1989 (g) 241-TX-115 1977 241-TX-117 241-TX-11 | | | | | | 08/79 | | | | 241-SX-113 | | | | | | | | | | 241-SX-114 1972 — (7) 1989 (9) 241-T-101 1992 7500 (9) 04/93 1992 (0) 241-T-103 1974 (1000 (9) 11/83 1989 (9) 241-T-106 1973 115000 (9) 40 (1) 08/81 1986 (d) 241-T-108 1974 (1000 (9) 11/78 1980 (f) 241-T-109 1974 (1000 (9) 11/78 1980 (f) 241-T-109 1974 (1000 (9) 11/78 1980 (f) 241-T-109 1974 (1000 (9) 11/78 1980 (f) 241-T-109 1974 (1000 (9) 12/84 1989 (9) 241-T-109 1974 (1000 (9) 02/95 1994 (f)(t) 241-T-107 1984 2500 (1000 (9) 02/95 1994 (f)(t) 241-TX-105 1977 — (7) 04/83 1989 (9) 241-TX-110 1979, 1984 2500 (1000 (9) 10/79 1986 (d) 241-TX-113 1974 — (7) 04/83 1989 (9) 241-TX-114 1974 — (7) 04/83 1989 (9) 241-TX-114 1974 — (7) 04/83 1989 (9) 241-TX-115 1977 — (7) 04/83 1989 (9) 241-TX-115 1977 — (7) 04/83 1989 (9) 241-TX-116 1977 — (7) 04/83 1989 (9) 241-TX-117 1977 — (7) 04/83 1989 (9) 241-TX-117 1977 — (7) 04/83 1989 (9) 241-TX-117 1977 — (7) 04/83 1989 (9) 241-TX-116 1977 — (7) 04/83 1989 (9) 241-TX-117 1977 — (7) 04/83 1989 (9) 241-TX-117 1977 — (7) 04/83 1989 (9) 241-TX-117 1977 — (7) 04/83 1989 (9) 241-TX-117 1977 — (7) 04/83 1989 (9) 241-TX-117 1977 — (7) 04/83 1989 (9) 241-TX-117 1977 — (7) 04/83 1989 (9) 241-TX-116 1973 30000 0.7 (I) 02/83 1989 (9) 241-TX-104 1981 1400 (9) 11/83 1986 (d) 241-TY-105 1980 35000 4 (I) 02/83 1986 (d) 241-TY-105 1980 35000 2 (I) 11/78 1986 (d) 241-TY-106 1959 200000 2 (I) 11/78 1986 (d) 241-TY-106 1959 30000 20 (I) 09/79 1986 (d) 241-U-101 1955 5000 68100 (9) 0.05 (0) 10/78 1986 (d) 241-U-101 1955 5000 68100 (9) 0.05 (0) 10/78 1986 (d) 241-U-101 1955 5000 68100 (9) 0.05 (0) 10/78 1986 (d) 241-U-101 1950 5000 68100 (9) 0.05 (0) 10/79 1986 (d) 241-U-101 1950 5000 68100 (9) 0.05 (0) 10/79 1986 (d) (d) 241-U-101 1950 5000 68100 (9) 0.05 (0) 10/79 1986 (d) (d) 241-U-101 1950 5000 68100 (9) 0.05 (0) 10/79 1986 (d) (d) 241-U-101 1950 5000 68100 (9) 0.05 (0) 10/79 1986 (d) (d) 241-U-101 1950 5000 68100 (9) 0.05 (0) 10/79 1986 (d) | 241-SX-113 | | | | | | | | | 241-T-101 1992 7500 (9) 04/93 1992 (p) 241-T-103 1974 <1000 (9) 11/83 1989 (g) 241-T-106 1973 115000 (9) 40 (I) 08/81 1986 (d) 241-T-107 1984 (7) 05/96 1989 (g) 241-T-108 1974 <1000 (9) 11/78 1980 (f) 241-T-109 1974 <1000 (9) 12/84 1989 (g) 241-T-111 1979, 1994 (13) <1000 (9) 02/95 1994 (f) 241-T-105 1977 (7) 04/83 1989 (g) 241-TX-105 1977 (7) 04/83 1989 (g) 241-TX-110 1977 (7) 04/83 1989 (g) 241-TX-111 1974 (7) 04/83 1989 (g) 241-TX-114 1974 (7) 04/83 1989 (g) 241-TX-115 1977 (7) 04/83 1989 (g) 241-TX-116 1977 (7) 04/83 1989 (g) 241-TX-116 1977 (7) 04/83 1989 (g) 241-TX-116 1977 (7) 04/83 1989 (g) 241-TX-116 1977 (7) 04/83 1989 (g) 241-TX-117 1977 (7) 04/83 1989 (g) 241-TX-116 1977 (7) 04/83 1989 (g) 241-TX-117 1977 (7) 04/83 1989 (g) 241-TX-116 1977 (7) 04/83 1989 (g) 241-TX-117 1977 (7) 04/83 1989 (g) 241-TX-116 1977 (7) 04/83 1989 (g) 241-TX-117 1977 (7) 04/83 1989 (g) 241-TY-101 1973 <1000 (9) 04/83 1989 (g) 241-TY-101 1973 3000 0.7 (I) 02/83 1986 (d) 241-TY-104 1981 1400 (9) 11/83 1986 (d) 241-TY-105 1980 35000 4 (I) 02/83 1986 (d) 241-TY-106 1959 30000 20 (I) 09/79 1986 (d) 241-TY-106 1959 30000 20 (I) 09/79 1986 (d) 241-U-104 1961 55000 0.09 (I) 10/78 1986 (d) 241-U-104 1961 55000 0.09 (I) 10/78 1986 (d) 241-U-104 1981 1985 (d) 241-U-104 1981 1985 (d) 241-U-104 1981 1986 (d) | | | | – (7) | | 07/79 | 1989 | | | 241-T-103 | | | | | 21 (o) | | | (o) | | 241-T-106 | | | | | | | | | | 241-T-108 | | | 1973 | 115000 (9) | 40 (I) | 08/81 | 1986 | (d) | | 241-T-109 | | | | | | | | (g) | | 241-T-111 1979, 1994 (13) < 1000 (9) 02/95 1994 (f)(t) 241-TX-105 1977 - (7) 04/83 1989 (g) 241-TX-107 (6) 1984 2500 10/79 1986 (d) 241-TX-110 1977 - (7) 04/83 1989 (g) 241-TX-113 1974 - (7) 04/83 1989 (g) 241-TX-114 1974 - (7) 04/83 1989 (g) 241-TX-115 1977 - (7) 09/83 1989 (g) 241-TX-116 1977 - (7) 09/83 1989 (g) 241-TX-117 1977 - (7) 04/83 1989 (g) 241-TY-101 1973 < 1000 (9) | 241-T-109 | | 1974 | < 1000 (9) | | 12/84 | 1989 | | | 241-TX-107 (6) 1984 2500 10/79 1986 (d) 241-TX-110 1977 (7) 04/83 1989 (g) 241-TX-113 1974 (7) 04/83 1989 (g) 241-TX-114 1974 (7) 04/83 1989 (g) 241-TX-115 1977 (7) 04/83 1989 (g) 241-TX-116 1977 (7) 09/83 1989 (g) 241-TX-116 1977 (7) 04/83 1989 (g) 241-TX-117 1977 (7) 04/83 1989 (g) 241-TX-101 1973 <1000 (9) 04/83 1989 (g) 241-TY-101 1973 3000 0.7 (l) 02/83 1986 (d) 241-TY-104 1981 1400 (9) 11/83 1986 (d) 241-TY-105 1960 3500 4 (l) 02/83 1986 (d) 241-TY-106 1959 20000 2 (l) 11/78 1986 (d) 241-TY-106 1959 30000 20 (l) 09/79 1986 (d) 241-U-101 1959 30000 20 (l) 09/79 1986 (d) 241-U-104 1961 55000 0.09 (l) 10/78 1986 (d) 241-U-106 1975 5000 to 8100 (9) 0.05 (q) 12/84 1986 (d) 241-U-112 1980 8500 (9) 09/79 1986 (d) | | | | | · · · · · · · · · · · · · · · · · · · | 02/95 | 1994 | (f)(t) | | 241-TX-110 1977 (7) 04/83 1989 (g) 241-TX-113 1974 (7) 04/83 1989 (g) 241-TX-114 1974 (7) 04/83 1989 (g) 241-TX-115 1977 (7) 09/83 1989 (g) 241-TX-116 1977 (7) 04/83 1989 (g) 241-TX-117 1977 (7) 03/83 1989 (g) 241-TY-101 1973 <1000 (9) | | (6) | | | | | | (g) | | 241-TX-113 1974 — (7) 04/83 1989 (g) 241-TX-114 1974 — (7) 04/83 1989 (g) 241-TX-115 1977 — (7) 09/83 1989 (g) 241-TX-116 1977 — (7) 04/83 1989 (g) 241-TY-101 1973 <1000 (9) | 241-TX-110 | , | 1977 | ··· (7) | | | | (a)
(a) | | 241-TX-116 1977 - (7) 04/83 1989 (g) 241-TX-117 1977 - (7) 03/83 1989 (g) 241-TY-101 1973 <1000 (9) | | | | | | 04/83 | 1989 | (<u>o</u>) | | 241-TX-116 1977 - (7) 04/83 1989 (g) 241-TX-117 1977 - (7) 03/83 1989 (g) 241-TY-101 1973 <1000 (9) | 241-TX-115 | | | | | | | (g)
(c) | | 241-TY-101 1977 - (r) 03/83 1989 (g) 241-TY-101 1973 <1000 (9) | | | 1977 | (7) | | 04/83 | 1989 | (g) | | 241-TY-103 1973 3000 0.7 (l) 02/83 1986 (d) 241-TY-104 1981 1400 (9) 11/83 1986 (d) 241-TY-105 1960 35000 4 (l) 02/83 1986 (d) 241-TY-106 1959 20000 2 (l) 11/78 1986 (d) 241-U-101 1959 30000 20 (l) 09/79 1986 (d) 241-U-104 1961 55000 0.09 (l) 10/78 1986 (d) 241-U-110 1975 5000 to 8100 (9) 0.05 (q) 12/84 1986 (d) 241-U-112 1980 8500 (9) 09/79 1986 (d) | | | | | ··· | | | (g) | | 241-TY-104 1981 1400 (9) 11/83 1986 (d) 241-TY-105 1960 35000 4 (I) 02/83 1986 (d) 241-TY-106 1959 20000 2 (I) 11/78 1986 (d) 241-U-101 1959 30000 20 (I) 09/79 1986 (d) 241-U-104 1961 55000 0.09 (I) 10/78 1986 (d) 241-U-110 1975 5000 to 8100 (9) 0.05 (q) 12/84 1986 (d) 241-U-112 1980 8500 (9) 09/79 1986 (d) | | | | | 0.7 (1) | | | (f) | | 241-TY-105 1960 35000 4 (I) 02/83 1986 (d) 241-TY-106 1959 20000 2 (I) 11/78 1986 (d) 241-U-101 1959 30000 20 (I) 09/79 1986 (d)
241-U-104 1961 55000 0.09 (I) 10/78 1986 (d) 241-U-110 1975 5000 to 8100 (9) 0.05 (q) 12/84 1986 (d) 241-U-112 1980 8500 (9) 09/79 1986 (d) | 241-TY-104 | | 1981 | 1400 (9) | | | | | | 241-U-101 1959 30000 20 (I) 09/79 1986 (d) 241-U-104 1961 55000 0.09 (I) 10/78 1986 (d) 241-U-110 1975 5000 to 8100 (9) 0.05 (q) 12/84 1986 (d) (q) 241-U-112 1980 8500 (9) 09/79 1986 (d) | | | | | 4 (1) | 02/83 | 1986 | (d) | | 241-U-104 1961 55000 0.09 (I) 10/78 1986 (d) 241-U-110 1975 5000 to 8100 (9) 0.05 (q) 12/84 1986 (d) (q) 241-U-112 1980 8500 (9) 09/79 1986 (d) | | | | | | | | | | 241-U-110 1975 5000 to 8100 (9) 0.05 (q) 12/84 1986 (d) (q) 241-U-112 1980 8500 (9) 09/79 1986 (d) | 241-U-104 | | 1961 | 55000 | 0.09 (i) | | 1986 | | | (a) | | | | | 0.05 (q) | 12/84 | 1986 | (d) (q) | | | and the state of t | 000000000000000000000000000000000000000 | | Side Contraction of the Contract | | U9// 9 | 1986 | (d) | N/A = not applicable (not yet interim stabilized) # TABLE H-1. SINGLE-SHELL LEAK VOLUME ESTIMATES (Sheet 2 of 5) ## Footnotes: - (1) Current estimates [see reference(b)] are that 610 Kgallons of cooling water was added to Tank 241-A-105 from November 1970 to December 1978 to aid in evaporative cooling. In accordance with <u>Dangerous Waste Regulations</u> [Washington Administrative Code 173-303-070 (2)(a)(ii), as amended, Washington State Department of Ecology, 1990, Olympia, Washington], any of this cooling water that has been added and subsequently leaked from the tank must be classified as a waste and should be included in the total leak volume. In August 1991, the leak volume estimate for this tank was updated in accordance with the WAC regulations. Previous estimates excluded the cooling water leaks from the total leak volume estimates because the waste content (concentration) in the cooling water which leaked should be much less than the original liquid waste in the tank (the sludge is relatively insoluble). The total leak volume estimate in this report (10 Kgallons to 277 Kgallons) is based on the following (see References): - 1. Reference (b) contains an estimate of 5 Kgallons to 15 Kgallons for the initial leak prior to August 1968. - 2. Reference (b) contains an estimate of 5 Kgallons to 30 Kgallons for the leak while the tank was being sluiced from August 1968 to November 1970. - 3. Reference (b) contains an estimate of 610 Kgallons of cooling water added to the tank from November 1970 to December 1978 but it was estimated that the leakage was small during this period. This reference contains the statement "Sufficient heat was generated in the tank to evaporate most, and perhaps nearly all, of this water." This results in a low estimate of zero gallons leakage from November 1970 to December 1978. - 4. Reference (c) contains an estimate the 378 to 410 Kgallons evaporated out of the tank from November 1970 to December 1978. Subtracting the minimum evaporation estimate from the cooling water added estimate provides a range from 0 to 232 Kgallons of cooling water leakage from November 1970 to December 1978. | | Low Estimate | Fign Estimate | |--------------------------------|--------------|---------------| | Prior to August 1968 | 5,000 | 15,000 | | August 1968 to November 1970 | 5,000 | 30,000 | | November 1970 to December 1978 | 0 | 232,000 | | Totals | 10,000 | 277,000 | - These leak volume estimates do not include (with some exceptions), such things as: (a) cooling/raw water leaks, (b) intrusions (rain infiltration) and subsequent leaks, (c) leaks inside the tank farm but not through the tank liner (surface leaks, pipeline leaks, leaks at the joint for the overflow or fill lines, etc.), and (d) leaks from catch tanks, diversion boxes, encasements, etc. - (3) In many cases, a leak was suspected long before it was identified or confirmed. For example, reference (d) shows that Tank 241-U-104 was suspected of leaking in 1956. The leak was "confirmed" in 1961. This report lists the "assumed leaker" date of 1961. Using present standards, Tank 241-U-104 would have been declared an assumed leaker in 1956. In 1984, the criteria designations of "suspected leaker," "questionable integrity," "confirmed leaker," "declared leaker," "borderline" and "dormant," were merged into one category now reported as "assumed leaker." See reference (f) for explanation of when, how long, and how fast some of the tanks leaked. It is highly likely that there have been undetected leaks from single-shell tanks because of the nature of their design and instrumentation. - (4) There has been an effort in the past few years to re-evaluate these leak volume estimates; however, the activity is not currently funded. # TABLE H-1. SINGLE-SHELL TANK LEAK VOLUME ESTIMATES (Sheet 3 of 5) - (5) The leak volume estimate date for these tank is before the "declared leaker" date because the tank was in a "suspected leaker" or "questionable integrity" status; however, a leak volume had been estimated prior to the tank being reclassified. - (6) The increasing radiation levels in drywells and laterals associated with these three tanks could be indicative of a continuing leak or movement of existing radio nuclides in the soil. There is no conclusive way to confirm these observations. - (7) Methods were used to estimate the leak volumes from these 19 tanks based on the <u>assumption</u> that their cumulative leakage is approximately the same as for 18 of the 24 tanks identified in footnote (9). For more details see reference (g). The total leak volume estimate for these tanks is 150 Kgallons (rounded to the nearest Kgallons), for an average of approximately 8 Kgallons for each of 19 tanks. - (8) The total has been rounded to the nearest 50 Kgallons. Upper bound values were used in many cases in developing these estimates. It is likely that some of these tanks have not actually leaked. - (9) Leak volume estimate is based solely on observed liquid level decreases in these tanks. This is considered to be the most accurate method for estimating leak volumes. - (10) The curie content shown is as listed in the reference document and is <u>not</u> decayed to a consistent date: therefore, a cumulative total is inappropriate. - (11) Tank 241-C-101 experienced a liquid level decrease in the late 1960s and was taken out of service and pumped to a "minimum heel" in December 1969. In 1970, the tank was classified as a "questionable integrity" tank. Liquid level data show decreases in level throughout the 1970s and the tank was saltwell pumped during the 1970s, ending in April 1979. The tank was reclassified as a "confirmed leaker" in January 1980. See references (q) and (s); refer to reference (s) for information on the potential for there to have been leaks from other C-farm tanks (specifically, C-102, C-103, and C-109). - (12) These dates indicate when the tanks were declared to be interim stabilized. In some cases, the official interim stabilization documents were issued at a later date. Also, in some cases, the field work associated with interim stabilization was completed at an earlier date. - (13) Tank T-111 was declared an assumed re-leaker on February 28, 1994, due to a decreasing trend in surface level measurement. This tank was pumped, and interim stabilization completed on February 22, 1995. - (14) Tank BX-111 was declared an assumed re-leaker in April 1993. Preparations for pumping were delayed, following an administrative hold place on all tank farm operations in August 1993. Pumping resumed and the tank was declared interim stabilized on March 15, 1995. # TABLE H-1. SINGLE-SHELL TANK LEAK VOLUME ESTIMATES (Sheet 4 of 5) ## References: - (a) Murthy, K.S., et al, June 1983, Assessment of Single-Shell Tank Residual Liquid Issues at Hanford Site, Washington, PNL-4688, Pacific Northwest Laboratory, Richland, Washington. - (b) WHC, 1991a, Tank 241-A-105 Leak Assessment, WHC-MR-0264, Westinghouse Hanford Company, Richland, Washington. - (c) WHC, 1991b, Tank 241-A-105 Evaporation Estimate 1970 Through 1978, WHC-EP-0410, Westinghouse Hanford Company, Richland, Washington. - (d) Smith, D. A., January 1986, Single-Shell Tank Isolation Safety Analysis Report, SD-WM-SAR-006, Rev. 1, Westinghouse Hanford Company, Richland, Washington. - (e) McCann, D. C., and T. S. Vail, September 1984, Waste Status Summary, RHO-RE-SR-14, Rockwell Hanford Operations, Richland, Washington. - (f) Catlin, R. J., March 1980, Assessment of the Surveillance Program of the High-Level Waste Storage Tanks at Hanford, Hanford Engineering Development Laboratory, Richland, Washington. - (g) Baumhardt, R. J., May 15, 1989, Letter to R. E. Gerton, U.S. Department of Energy-Richland Operations Office, Single-Shell Tank Leak Volumes, 8901832B R1, Westinghouse Hanford Company, Richland, Washington. - (h) WHC, 1990a, Occurrence Report, Surface Level Measurement Decrease in Single-Shell Tank 241-AX-102, WHC-UO-89-023-TF-05, Westinghouse Hanford Company, Richland, Washington. - (i) Groth, D. R., July 1, 1987, Internal Memorandum to R. J. Baumhardt, *Liquid Level Losses in Tanks 241-C-201, -202 and -204*, 65950-87-517, Westinghouse Hanford Company, Richland, Washington. - (j) Groth, D. R. and G. C. Owens, May 15, 1987, Internal Memorandum to J. H. Roecker, *Tank 103-A Integrity Evaluation*, Westinghouse Hanford Company, Richland, Washington. - (k) Campbell, G. D., July 8, 1988, Internal Memorandum to R. K. Welty, Engineering Investigation: Interstitial Liquid Level Decrease in Tank 241-SX-104, 13331-88-416, Westinghouse Hanford Company, Richland, Washington. - (I) ERDA, 1975, Final Environmental Statement Waste Management Operations, Hanford Reservation, Richland, Washington, ERDA-1538, 2 vols., U.S. Energy Research and Development Administration, Washington, D.C. - (m) WHC, 1992a, Tank 241-SX-108 Leak Assessment, WHC-MR-0300, Westinghouse Hanford Company, Richland, Washington. - (n) WHC, 1992b, Tank 241-SX-109 Leak Assessment, WHC-MR-0301, Westinghouse Hanford Company, Richland,
Washington. - (o) WHC, 1992c, Tank 241-SX-115 Leak Assessment, WHC-MR-0302, Westinghouse Hanford Company, Richland, Washington. # TABLE H-1. SINGLE-SHELL TANK LEAK VOLUME ESTIMATES (Sheet 5 of 5) - (p) WHC, 1992d, Occurrence Report, Apparent Decrease in Liquid Level in Single Shell Underground Storage Tank 241-T-101, Leak Suspected; Investigation Continuing, RL-WHC-TANKFARM-1992-0073, Westinghouse Hanford Company, Richland, Washington. - (q) WHC-1990b, A History of the 200 Area Tank Farms, WHC-MR-0132, Westinghouse Hanford Company, Richland, Washington. - (r) WHC, 1993, Occurrence Report, Single Shell Underground Waste Storage Tank 241-BX-111 Surface Level Decrease and Change From Steady State Condition, RL-WHC-TANKFARM-1993-0035, Westinghouse Hanford Company, Richland, Washington. - (s) WHC, 1993a, Assessment of Unsaturated Zone Radionuclide Contamination Around Single-Shell Tanks 241-C-105 and 241-C-106, WHC-SD-EN-TI-185, REV OA, Westinghouse Hanford Company, Richland, Washington. - (t) WHC, 1994, Occurrence Report, Apparent Liquid Level Decrease in Single Shell Underground Storage Tank 241-T-111; Declared an Assumed Re-Leaker, RL-WHC-TANKFARM-1994-0009, Westinghouse Hanford Company, Richland, Washington. # APPENDIX I INTERIM STABILIZATION STATUS CONTROLLED, CLEAN, AND STABLE STATUS # TABLE I-1. SINGLE-SHELL TANKS INTERIM STABILIZATION STATUS (Sheet 1 of 3) July 31, 1998 | г т | | Interim | | (o | | Interim | | | | Interim | | |-----------------|---|----------------------------|------------------------|----------------|---------------------------------------|------------|---------------------------------------|------------------|---|----------|-----------| | Tank | Tank | Stabil. | Stabil. | Tank | Tank | Stabil. | Stabil. | Tank | Tank | Stabil. | Stabil. | | | integrity | Date (1) | Mathod | Number | integrity | Data (1) | Method | Number | Integrity | Data_(1) | Mathod | | Number
A-101 | SOUND | N/A | Manage | C-101 | ASMO LKR | 11/83 | AR | T-108 | ASMO LKR | 11/78 | AR | | A-102 | SOUND | 06/89 | SN | C-102 | SOUND | 09/95 | JET | T-109 | ASMD LKR | 12/84 | AR | | A-103 | ASMO LKR | 06/88 | AR | C-103 | SOUND | N/A | | T-110 | SOUND | N/A | | | A-104 | ASMD LKR | 09/78 | AR | C-104 | SOUND | 09/89 | SN | T-111 | ASMO LKR | 02/95 | JET | | A-106 | ASMD LKR | 07/79 | AR | C-106 | SOUND | 10/95 | AR (5) | T-112 | SOUND | 03/81 | AR(2)(3) | | A-106 | SOUND | 08/82 | ĀŘ | C-106 | SOUND | N/A | | T-201 | SOUND | 04/81 | AR (3) | | AX-101 | SOUND | N/A | | C-107 | SOUND | 09/86 | JET | T-202 | SOUND | 08/81 | AR | | AX-102 | ASMD LKR | 09/88 | SN | C-108 | SOUND | 03/84 | AR | T-203 | SOUND | 04/81 | AR | | AX-103 | SOUND | 06/87 | AR | C-109 | SOUND | 11/83 | AR | T-204 | SOUND | 06/81 | AR | | AX-104 | ASMD LKR | 08/61 | AR | C-110 | ASMD LKR | 05/95 | JET | TX-101 | SOUND | 02/84 | AR | | B-101 | ASMD IKR | 03/81 | SN | C-111 | ASMD LKR | 03/84 | SN | TX-102 | SOUND | 04/83 | JET | | B-102 | SOUND | 08/86 | SN | C-112 | BOUND | 09/90 | AR | TX-103 | SOUND | 08/83 | JET | | B-103 | ASMD IKR | 02/85 | SN | C-201 | ASMD LKR | 03/82 | AR | TX-104 | SOUND | 09/79 | SN | | B-104 | SOUND | 06/86 | SN | C-202 | ASMD LKR | 08/81 | AR | TX-105 | ASMD LKR | 04/83 | JET | | B-106 | ASMD IKR | 12/84 | AR | C-203 | ASMD LKR | 03/82 | AR | TX-106 | SOUND | 06/83 | JET | | B-106 | SOUND | 03/86 | SN | C-204 | ASMD LKR | 09/82 | AR | TX-107 | ASMD LKR | 10/79 | AR | | B-107 | ASMD LKR | 03/86 | SN | S-101 | SOUND | N/A | | TX-108 | SOUND | 03/83 | JET | | B-108 | SOUND | 06/86 | SN | S-102 | SOUND | N/A
N/A | | TX-109
TX-110 | ASMD LKR | 04/83 | JET | | B-109 | SOUND | 04/85 | 5N | 8-103 | SOUND LKR | 12/84 | AR | TX-110 | SOUND | 04/83 | JET | | B-110 | ASMD LKR | 12/84 | AR | 8-104
8-106 | SOUND | 09/88 | JET | TX-112 | SOUND | 04/83 | JET | | B-111 | ASMD LKR | 08/85
05/85 | SN
SN | S-106 | SOUND | N/A | - JE 1 | TX-113 | ASMD LKR | 04/83 | JET | | B-112 | ASMO LKR | 08/81 | AR (3) | S-107 | SOUND | N/A | | TX-114 | ASMD LKR | 04/83 | JET | | B-201 | SOUND | 06/85 | AR | S-107 | SOUND | 12/96 | JET (7) | TX-115 | ASMD LKR | 09/83 | JET | | B-202 | ASMD LKR | 06/84 | AR | S-109 | SOUND | N/A | 02.11// | TX-116 | ASMD LKR | 04/83 | JET | | B-203
B-204 | ASMD LKR | 06/84 | AR | S-110 | SOUND | 01/97 | JET (8) | TX-117 | ASMD LKR | 03/63 | JET | | BX-101 | ASMD LKR | 09/78 | AR | S-111 | SOUND | N/A | 02.1 (0) | TX-118 | SOUND | 04/83 | JET | | BX-102 | ASMD LKR | 11/78 | AR | \$-112 | SOUND | N/A | | TY-101 | ASMD LKR | 04/B3 | JET | | BX-102 | SOUND | 11/83 | AR(2) | SX-101 | SOUND | N/A | | TY-102 | SOUND | 09/79 | AR | | BX-104 | SOUND | 09/89 | SN | SX-102 | SOUND | N/A | | TY-103 | ASMD LKR | 02/83 | JET | | BX-105 | SOUND | 03/81 | SN | SX-103 | SOUND | N/A | | TY-104 | ASMD LKR | 11/83 | AR | | BX-106 | SOUND | 07/95 | SN | SX-104 | ASMO LKR | N/A | | TY-105 | ASMD LKR | 02/83 | JET | | BX-107 | SOUND | 09/90 | JET | SX-105 | SOUND | N/A | | TY-106 | ASMD LKR | 11/78 | AR | | BX-108 | ASMD LKR | 07/79 | SN | SX-106 | SOUND | N/A | · · · · · · · · · · · · · · · · · · · | U-101 | ASMD LKR | 09/79 | AR | | 8X-109 | SOUND | 09/90 | JET | SX-107 | ASMO LKR | 10/79 | AR | U-102 | SOUND | N/A | | | BX-110 | ASMD LKR | 08/85 | SN (4) | SX-108 | ASMD LKR | 08/79 | RA. | U-103 | SOUND | N/A | | | BX-111 | ASMO LKR | 03/95 | JET | SX-109 | ASMD LKR | 05/81 | AR | U-104 | ASMD LKR | 10/78 | AR | | BX-112 | SOUND | 09/90 | JET | SX-110 | ASMD LKR | 08/79 | AR | U-105 | SOUND | N/A | | | BY-101 | SOUND | 05/84 | JET | SX-111 | ASMD LKR | 07/79 | SN | U-106 | SOUND | N/A | | | BY-102 | SOUND | 04/95 | JET | SX-112 | ASMD LKR | 07/79 | AR | U-107 | SOUND | N/A | | | BY-103 | ASMD LKR | 11/97 | JET(10) | SX-113 | ASMD LKR | 11/78 | AR | U-108 | SOUND | N/A | | | BY-104 | SOUND | 01/85 | JET | SX-114 | ASMD LKR | 07/79 | AR | U-109 | SOUND | N/A | | | BY-105 | ASMO LKR | N/A | | SX-116 | ASMD LKR | 09/78 | AR | U-110 | ASMD LKR | 12/84 | AR | | BY-106 | ASMD LKR | N/A | | T-101 | ASMD LKR | 04/93 | SN | U-111 | SOUND | N/A | | | 8Y-107 | ASMD LKR | 07/79 | JET | T-102 | SOUND | 03/.61 | AR(2)(3) | W-112 | ASMD LKR | 09/79 | AR | | BY-108 | ASMO LKR | 02/85 | JET | T-103 | ASMD LKR | 11/83 | AR | U-201 | SOUND | 08/79 | AR | | BY-109 | SOUND | 07/97 | JET(9) | T-104 | SOUND | N/A | | U-202 | SOUND | 08/79 | SN | | BY-110 | SOUND | 01/86 | JET | T-105 | SOUND | 06/87 | AR | U-203 | SOUND | 08/79 | AR | | BY-111 | SOUND | 01/85 | JET | T-106 | ASMD LKR | 08/81 | AR | U-204 | SOUND | 08/79 | SN | | BY-112 | SOUND | 06/84 | JET | T-107 | ASMO LKR | 05/96 | JET | | | | | | JET =
SN = S | Administrative
Saltwell jet pu
Supernate pun
Not yet interir | imped to re
nped (Non-J | move drai
let pumpe | | itial liquid | | | Not Yet | tabilized Tan
Interim Stabil
Single-Shell | ized | 119
30 | | | LKR = Assum | | <u>=::</u> | | · · · · · · · · · · · · · · · · · · · | | | <u></u> | | | · · · | # TABLE I-1. SINGLE-SHELL TANKS INTERIM STABILIZATION STATUS (sheet 2 of 3) ### Footnotes: - (1) These dates indicate when the tanks were actually interim stabilized. In some cases, the official interim stabilization documents were issued at a later date. - Originally, seven tanks (B-104, B-110, B-111, BX-103, T-102, and T-112) did not meet current established supernatant and interstitial liquid interim stabilization criteria, but <u>did</u> meet the criteria in existence when they were declared interim stabilized. B-110. B-111. U-110 were determined to have met current interim stabilization criteria, per WHC-SD-WM-ER-516-REV 0, "Interim Stabilization Status of SSTs B-104, B-110, B-111, T-102, T-112, and U-110," and WHC-SD-WM-ER-518-REV 0, "Investigation of Liquid Intrusion in 241-BX-103," both dated October 5, 1995. B-104, BX-103, T-102, T-112 have been determined to meet current interim stabilization criteria as of September 30, 1996, per memo 9654456, J. H. Wicks to Dr. J. K. McClusky, DOE-RL. <u>B-202</u> was determined to no longer meet the current established criteria for 200-series tanks due to a steady increase in the surface level indicating an ongoing intrusion based on a comparison of in-tank videos and subsequent evaluation in March 1996. - (3) Original Interim Stabilization data are missing on four tanks: B-201, T-102, T-112, and T-201. - (4) BX-110 was interim stabilized by Supernate Pumping in August 1985. Jet pumping began in December 1993 and soon stopped because of equipment failure. Due to low net volume pumped, major equipment failure, and ALARA, it was decided jet pumping would not resume. An in-tank video was taken in October 1994. Reevaluation after review of the video indicated 1.5 Kgallons of waste was pumped. (Almost 3 Kgallons of water flushes were needed to produce 1.5 Kgallons tank waste.) - (5) C-105 was interim stabilized administratively on October 30, 1995. No jet pumping occurred in this tank, nor does interstitial liquid level data exist for this tank. There are no diptubes or LOWs installed. Approximately 12 Kgallons of liquid waste was evaporated between May 1993 and October 1995. An in-tank video taken August 30, 1995, revealed a shallow supernatant pool surrounded by a 5-8 foot solids waste shore. The volume of supernate is estimated as 2 Kgallons. The tank currently meets the established criteria for declaring single-shell tanks Interim Stabilized. - (6) T-107 was interim stabilized by Jet Pumping in May 1996. Pumping was completed in March, and an in-tank video taken in May showed no supernate visible on the surface. The surface has an irregular contour of mostly sludge, and the elevation differences between high and low points appear to be about four inches. - (7) S-108 was interim stabilized by Jet Pumping in December 1996. Pumping was completed in September and an in-tank video taken in December showed
no supernate visible on the surface of the waste, which appears to be saltcake. The video shows a relatively level surface with some caving and crowning. Total waste is 448.7 Kgallons, with drainable liquids 4.0 Kgallons and no pumpable liquids. - (8) S-110 was interim stabilized by Jet Pumping in January 1997. Pumping was completed in July 1996, and an in-tank video taken in December showed no supernate visible on the surface of the waste, which appears to be saltcake. The level is not consistent and there appears to have been some caving and crowning. Total waste is 389.0 Kgallons, with drainable liquids 29.8 Kgallons and pumpable liquids 23.4 Kgallons. - (9) BY-109 was interim stabilized by Jet Pumping in July 1997. Pumping was completed in May 1997, and an intank video taken in June indicated there is a relatively uniform, slightly concave, crusty/cracked contour over most of the surface with no visible supernate. Total waste is 290.0 Kgallons, with drainable liquids 36.7 Kgallons, and pumpable liquids 20.3 Kgallons. # TABLE I-1. SINGLE-SHELL TANKS INTERIM STABILIZATION STATUS (sheet 3 of 3) (10) BY-103 was interim stabilized in November 1997, after completion of jet pumping in September. An in-tank video taken in February 1997 showed no visible surface liquid and no evidence of an intrusion. The waste was dry and flaky. Dried, caked waste was suspended from many of the pipes and pieces of process equipment. The overall surface of the waste seemed to slump slightly towards the center of the tank. Total waste is 414 Kgallons, with drainable liquids 38.3 Kgallons, and pumpable liquids 31.9 Kgallons. # TABLE I-2. TRI-PARTY AGREEMENT SINGLE-SHELL TANK INTERIM STABILIZATION SCHEDULE July 31, 1998 As part of the Controlled, Clean, and Stable mission, the Single-Shell Tank Interim Stabilization Project goal is to mitigate the risk to the environment from a leak release from aging SSTs, by removing as much of the drainable liquid as practical, for safe storage prior to full waste retrieval. New TPA milestones were negotiated effective September 23, 1996, to allow greater flexibility in the sequencing of tanks, in light of the latest technical information regarding tank waste safety status and watch list concerns. | Milestone | Description | Due Date | Actual Date | Comments | |-----------|---|-------------------|-------------|---| | M-41-20 | Start Interim Stabilization of 4
Single-Shell Tanks | 9/30/96 | 3/24/96 | S-108, S-110, T-104, and
T-107 started. | | M-41-21 | Start Interim Stabilization of 2
Single-Shell Tanks | 5/31/97 (1) | 5/12/97 | BY-109 started 9/10/96;
T-110 started 5/12/97 | | M-41-22 | Start Interim Stabilization of 6
Single-Shell Tanks | 9/30/97
(2)(4) | | BY-103 started 9/29/97,
SX-104 started 9/26/97 | | M-41-23 | Start Interim Stabilization of 8
Single-Shell Tanks | 3/31/98
(3)(4) | | | | M-41-24 | Start Interim Stabilization of 9
Single-Shell Tanks | 9/30/98
(4) | | | | M-41-25 | Start Interim Stabilization of 3
Single-Shell Tanks | 3/31/99
(4) | | | | M-41-26 | Start Interim Stabilization of 2
Single-Shell Tanks | 9/30/99
(4) | | | | M-41-27 | Complete Saltwell Pumping of
Single-Shell Tanks | 9/30/00
(4) | | | | M-41-00 | Complete Interim Stabilization of
Single-Shell Tanks including
Intrusion Prevention | 9/30/00
(4) | | | - (1) On March 13, 1997, Department of Ecology (Ecology) approved Change Control Form M-41-96-03, extending M-41-21 from March 31 to May 31, 1997. - (2) Change Control Form M-41-97-01 was sent to Ecology on June 27, 1997; Dispute Resolution invoked on July 16, 1997. This Change Request was denied by the Director of Ecology on February 10, 1998. - (3) Change Control Form M-41-97-02 was sent to Ecology on December 29, 1997. Dispute Resolution invoked on January 13, 1998. This Change Request was denied by the Director of Ecology on March 10, 1998. - (4) Path Forward Plan submitted to Ecology on April 15, 1998, projects completion date of September 30, 2004. TABLE I-3. SINGLE-SHELL TANKS STABILIZATION STATUS SUMMARY July 31, 1998 | Partial Interim Isolated (PI) | Intrusion Preven | ntion Completed (IP) | Interim Stab | ilized (IS) | |-------------------------------|-------------------------|---------------------------|--|--------------------| | EAST AREA | EAST AREA | WEST AREA | EAST AREA | WEST AREA | | A-101 | A-103 | S-104 | A-102 | S-104 | | A-102 | A-104 | S-105 | § A-103 | S-105 | | | A-105 | | Ã-104 | S-108 | | AX-101 | A-106 | SX-107 | ®A-105 | S-110 | | | •·· | SX-108 | Ã-106 | | | BY-102 | AX-102 | SX-109 | | SX-107 | | BY-103 | AX-103 | SX-110 | AX-102 | SX-108 | | BY-105 | AX-104 | SX-111 | AX-103 | SX-109 | | BY-106 | | SX-112 | AX-104 | SX-110 | | BY-109 | B-FARM - 16 tanks | SX-113 | | SX-111 | | | BX-FARM - 12 tanks | SX-114 | B-FARM - 16 tanks | SX-112 | | C-103 | | SX-115 | BX-FARM - 12 tanks | SX-113 | | C-105 | BY-101 | | | SX-114 | | C-106 | BY-104 | T-102 | BY-101 | SX-115 | | East Area 11 | BY-107 | T-103 | BY-102 | • | | | BY-108 | T-105 | BY-103 | T-101 | | WEST AREA | BY-110 | T-106 | BY-104 | T-102 | | S-101 | BY-111 | T-108 | BY-107 | T-103 | | S-102 | BY-112 | T-109 | BY-108 | T-105 | | S-103 | 5 | T-112 | BY-109 | T-106 | | S-106 | C-101 | T-201 | BY-110 | T-107 | | S-107 | C-102 | T-202 | BY-111 | T-108 | | S-108 | C-104 | T-203 | BY-112 | T-109 | | S-109 | C-107 | T-204 | 8 | T-111 | | S-110 | C-108 | (-20-1 | C-101 | T-112 | | S-111 | C-109 | TX-FARM - 18 tanks | C-102 | T-201 | | S-112 | C-110 | TY-FARM - 6 tanks | C-104 | T-202 | | 3-112 | C-111 | 1 1-1 Filling - O manage | C-105 | T-203 | | SX-101 | C-112 | U-101 | C-107 | T-204 | | SX-102 | C-201 | U-104 | C-108 | 1-204 | | SX-102
SX-103 | C-202 | U-112 | C-109 | TX-FARM - 18 tanks | | SX-103 | C-203 | U-102 | C-110 | TY-FARM - 6 tanks | | SX-105 | C-204 | U-202 | C-111 | I I-FARM - O WIMA | | | East Area 55 | U-203 | 20 | 11 404 | | SX-106 | 8 | U-204 | ©C-112 | U-101
U-104 | | T-101 | | | | | | T-104 | | West Area 53
Total 106 | C-202
C-203 | U-110 | | | | Total 100 | ■8 | U-112 | | T-107 | | | C-204 | U-201 | | T-110 | | | East Area 60 | U-202 | | T-111 | * | ad Stable (CCS) | | U-203 | | 11.486 | Controlled, Clean, a | ind Stable (CCS) | | U-204 | | U-102 | EAST ADEA | MITOTABEA | | West Area 50 | | U-103 | EAST AREA | WEST AREA | | TOTAL SE | | U-105 | BX-FARM - 12 Tanks | TX-FARM - 18 tanks | | | | U-106 | - 140 0 | TY FARM - 6 tanks | | | | U-107 | East Area 12 | West Area 24 | | | | U-108 | | Tota 36 | | | | U-109 | ** NI=4= | h | | | | U-110 | Note: CCS activities | | | | | U-111 | until funding is availa | Die. | | | | West Area 29
Total 40 | | | ************************************** | | | (cia) | | | ě | | | | *** | | 8 | | APPENDIX J ٠٠ ٤ # **CHARACTERIZATION PROGRESS STATUS** #### **Hanford Tank 200 West 200 East** Farm Facilities (8) T-Tank Farm 0 (13) (m) 200 East and West (9) Characterization **Progress Status** (1) **BX-Tank Farm** Tank Number (Basis Priority) High Priority Tank **TY-Tank Farm** SY-Tank Farm Report Under **BY-Tank Farm** (9) (10) (19) No Samole Taken (20) 7 (27) All tanks 75 ft, dia, except 200 ser which are 20 ft, die. Ø 55,000 gal TX-Tank Farm 138 Tanks Sampled (Solid, Liquids) (115 (24) B-Tank Farm 26 Tanks Sampled (Vapor Only) 494 Samples Taken (112 42 Tanks - All Analyses Completed (III) (30) Status as of AUGUST 3, 1998 AP-Tank Farm (770) U-Tank Farm AN-Tank Farm S-Tank Farm (14) C-Tank Farm **AZ-Tank Farm** (26) AX-Tank Farm AY-Tank Farm **\$X-Tank Farm** 104 (49) (10) (107 (24) (104 (11) (106 (11) (106) (11**0** (23) AW-Tank Farm (114) (25) (0) Figure J-1 2G95120163.3-8/3/98 =J-2 == # FIGURE J-1. CHARACTERIZATION PROGRESS STATUS CHART LEGEND (Sheet 2 of 2) July 31, 1998 | 200 East/West | The chart divides the two areas. | |--------------------|--| | Tank Farms | Each tank farm is represented by a rough schematic of the tank layout and a heading naming the farm. | | Circles | Tanks are depicted by a circle for single-shell tanks and a double circle for double-shell tanks. | | Boxes | A thin line box around a tank inside a tank farm denotes "Watch List" status, in concurrence with Table A-1 of this document. | | Numbers in Circles | The top number is the tank number. The number in parentheses is a weighted priority number, described in WHC-SD-WM-TA-164, "Tank Waste Characterization Basis." The numbers can be compared to each other to gain appreciation of relative priority: the higher the number, the greater the priority to sample and analyze. | | Underlined Numbers | If a number in parenthesis is underlined, it is denoted as a "Characterization Basis Tank," as described in WHC-SD-WM-TA-164, "Tank Waste Characterization Basis." These are key tanks taken from the priority list that are of principal interest to the Characterization Program. | | Circle Shading | The shading in the circle indicates the degree to which sampling and analysis are complete per requirements described in applicable Data Quality Objectives (DQOs). If blank, no characterization sampling has taken place. If fully shaded, the sampling and analysis
are complete for each DQO applicable to that tank. Tanks in which characterization has begun but is not complete are designated by being half shaded. | | Corner Triangles | Small triangles near a tank circle give further information on half-shaded tanks. Upper left corner triangles indicate that vapor samples have been taken from the tank. Lower left-hand corner triangles indicate that the tank has been sampled, analyzed, and a formal report has been written on the condensed phase sampling. Further status of the tank will be determined after review of the report is complete. Lower right-hand corner triangles indicate that some review has been completed and it has been determined that more sampling is needed to resolve the DQO requirements. Absence of triangles from a half shaded tank indicates recent condensed phase sampling. | This page intentionally left blank ## DISTRIBUTION ## Number of copies ## **OFFSITE - USA** 2 Congress of the United States House of Representatives 1111 Longworth Building Washington D.C. 20515-3703 Ron Wyden, Member of Congress, 3rd District House of Representatives 1431 Longworth House Office Building Washington D. C. 20515 Richard "Doc" Hastings, Member of Congress, 4th District 5 U. S. Department of Energy-Headquarters 1000 Independence Avenue, SW Washington, D. C. 20585 H. Calley EM-38 Cloverleaf Bldg. Raymond Greenberg EM-38 Cloverleaf Bldg. Kenneth Lang EM-36 Cloverleaf Bldg. Ralph Lightener EM-38 Cloverleaf Bldg. C. O'Dell EM-4 FORS/6E-034 U. S. Nuclear Regulatory Commission Division of Fuel Cycle, Safeguards & Security Mail Stop T8-A33 Washington, DC 20555 Robert Pierson, Chief 2 Washington State Department of Ecology Nuclear & Mixed Waste Management Program P.O. Box 47600 Olympia, WA 98504-7600 Library Nuclear Waste Program 300 Desmond Drive Lacey, WA 98504 R. Stanley 1 Washington State Department of Health Radiation Protection 7171 Cleanwater Lane Box 47827 Olympia, WA 98504-7827 Ed Bricker Oregon State Department of Energy 625 Marion St. NE Salem, OR 97310 Dirk Dunning 1 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6180 C. Forsberg MS-6180 l Los Alamos National Laboratory P. O. Box 1663 Los Alamos, NM 87545 Stephen Agnew Group INC-14, J-586 1 Sandia National Laboratories 1515 Eubank, NE P. O. Box 5800 Albuquerque, NM 87185 Scott Slezak, Organization 2161, MS 0716 Donald T. Oakley 9612 Hall Road Potomac, MD 20854 Fluor Daniel. Inc. 3353 Michelson Drive Irvine, CA 92698 Charles Divona, 512T l Foster-Miller, Inc. Power Systems Technology Group 350 Second Avenue Waltham, MA 02154-1196 Maureen Williams 3 <u>National Research Council</u> 2101 Constitution Ave, N.W. Washington D. C. 20418 Robert S. Andrews, Senior Staff Officer, MS HA456 1 Government Accountability Project West Coast Office 1402 Third Avenue, Suite 1215 Seattle, WA 98101 Thomas E. Carpenter, Director 1 Heart of America Northwest 1305 Fourth Avenue Cobb Building Suite 208 Seattle, WA 98101 Gerald M. Pollet, Executive Director 1 MACTEC 8310 Centerbrook Place Alexandria, VA 22308 Stanley M. Blacker, Vice President ## TRI-CITIES: 1 TRW Environmental Systems 507 Knight St, Ste A Richland, WA 99352 Mike Leonard 1 Foster Wheeler Environmental Corp. 3200 George Washington Way, Suite G Richland, WA 99352 R. J. Roberts 1 ARES Corporation 636 Jadwin Ave., Suite B Richland, WA 99352 Lewis Muhlestein l Babad Technical Services 2540 Cordoba Court Richland, WA 99352 l <u>Vista Research. Inc.</u> 3000 George Washington Way, Suite 2C Richland, WA 99352 Phil Ohl l Wastren Inc. 1050 Gilmore Ave, Suite C Richland, WA 99352 Gary Dunford l R. K. Welty 409 S. 41st Ave West Richland, WA 99353 1 R. Terry Winward 3110 W. Metaline Kennewick, WA 99336 # **ONSITE** | 3 | MACTEC - Meier Associ | ates, LLC | |-----|----------------------------|-------------------------------| | | J. D. Bingham | R2-11 | | | D. C. Hedengren | R2-11 | | | T. E. Jones | H6-12 | | | | | | 2 | MACTEC - ERS | | | | J. F. Bertsch | B1-42 | | | J. R. Brodeur | B1-42 | | | J. R. Diodeta | | | 1 | General Accounting Office | <u>:e</u> | | | C. R. Abraham | A1-80 | | 2 | Washington State Depart | ment of Ecology | | - | A. B. Stone | B5-18 | | | Library | B5-18 | | | - , | | | 1 | U. S. Environmental Prot | ection Agency | | _ | D. R. Sherwood | B5-01 | | | | | | 18 | U. S. Department of Ener | gy-Richland Operations Office | | | S. R. Brechbill | A4-52 | | | D. C. Bryson | S7-41 | | | J. M. Clark | S7-54 | | | J. J. Davis | A0-21 | | | J. A. Frey | K8-50 | | | R. L. Higgins | S7-53 | | | R. D. Hildebrand | H0-12 | | | J. E. Kinzer | S7-50 | | | C. Pacheco | S7-54 | | | S. H. Pfaff | \$7-50 | | | | A2-22 | | | G. M. Ramin | S7-54 | | | M. J. Royack | \$7-54
\$7-53 | | | A. B. Sidpara | | | | R. C. Sorensen | A4-81 | | | K. G. Wade | S7-53 | | | D. J. Williams | S7-41 | | | D. D. Wodrich | S7-50 | | | Reading Room | H2-53 | | 7 | Pacific National Northwe | st Laboratories | | | S. A. Bryan | P7-25 | | | R. E. Gephart | K9-76 | | | J. L. Huckaby | K6-80 | | | | P7-25 | | | C. M. King
A. F. Noonan | K9-91 | | | | | | | B. E. Opitz | K6-75 | | | L. A. Smyser | A0-21 | | 121 | Fluor Daniel, Inc., and A | ffiliated Companies | | | D. I. Allen | R2-50 | | | D. G. Baide | S5-05 | | | D. C. Daide | D3.03 | | J. E. Geary S6-71 T. C. Geer R1-42 M. S. Gerber B3-26 B. C. Gooding T4-01 D. R. Groth T4-15 R. D. Gustavson R2-54 M. D. Guthrie S6-72 J. C. Guyette S7-40 D. B. Hagmann R2-98 B. K. Hampton S7-40 B. M. Hanlon (10) T4-08 G. N. Hanson S5-07 W.M. Harty Jr. S5-13 B. A. Higley H5-49 J. L. Homan R3-25 G. P. Hopkins S5-03 | 16-07
12-84
13-30
15-13
13-21
12-11
14-07
14-07
14-07
14-07
14-07
14-07
14-15
15-14
16-14
16-15
16-16
16-16
16-16
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16-17
16 |
--|---| | D. B. Bechtold L. Bedford R. 2-84 M. V. Berriochoa T. M. Blaak H. L. Boston V. C. Boyles R. J. Brown C. B. Bryan N. K. Butler K. G. Carothers R. J. Cash W. L. Cowley D. K. DeFord M. P. Delozier M. L. Dexter M. L. Dexter M. L. Dexter M. L. Dever M. C. Etheridge S. D. Estey K. A. Elsethagen A. C. Etheridge S. D. Estey K. D. Fowler G. R. Franz G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann B. K. Hampton B. M. Hanlon M. Harly Jr. B. A. Higley J. L. Homan G. P. Hopkins S5-03 R2-14 R2-15 R2-16 R2-17 R2-18 R2-19 R | 22-84
33-30
55-13
33-21
22-11
74-07
74-07
33-01
22-11
37-14
21-13
35-07
34-51
35-07
34-51
35-07
34-51
35-07
34-51
35-07
34-51
35-07
34-51
35-07
36-71
33-26
74-01
74-08
55-07
34-54
85-07
85-03
85-07
85-03
85-07
85-03
85-07
85-03
85-07
85-03
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03 | | L. Bedford M. V. Berriochoa T. M. Blaak H. L. Boston V. C. Boyles R. J. Brown C. B. Bryan N. K. Butler R. J. Cash W. L. Cowley D. K. DeFord M. P. Delozier M. L. Dexter M. L. Dexter M. L. Dexter M. L. Dester M. A. Dodd J. G. Douglas K. A. Elsethagen A. C. Etheridge S. D. Estey K. D. Fowler G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann B. K. Hampton B. K. Hampton B. K. Hampton B. M. Harlon W. L. Bassen S5-03 W. L. Gever M. S. Gerber D. B. Hagmann B. K. Hampton B. K. Hampton S7-40 S-72 S-73 S-74 S-74 S-74 S-74 S-74 S-74 S-74 S-74 |
22-84
33-30
55-13
33-21
22-11
74-07
74-07
33-01
22-11
37-14
21-13
35-07
34-51
35-07
34-51
35-07
34-51
35-07
34-51
35-07
34-51
35-07
34-51
35-07
36-71
33-26
74-01
74-08
55-07
34-54
85-07
85-03
85-07
85-03
85-07
85-03
85-07
85-03
85-07
85-03
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-07
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03
85-03 | | M. V. Berriochoa T. M. Blaak H. L. Boston V. C. Boyles R. J. Brown C. B. Bryan N. K. Butler K. G. Carothers R. J. Cash W. L. Cowley D. K. DeFord M. P. Delozier M. L. Dexter M. L. Dexter M. A. Dodd J. G. Douglas K. A. Elsethagen A. C. Etheridge S. D. Estey K. D. Fowler G. R. Franz G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann B. K. Hampton B. M. Hanlon G. N. Hanson W. M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S5-03 | 33-30
35-13
33-21
33-21
34-07
34-07
34-07
32-11
37-14
35-07
34-51
35-07
34-51
35-07
34-51
35-07
34-51
35-07
34-51
35-07
34-51
35-07
34-51
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35-07
35 | | T. M. Blaak H. L. Boston C. Boyles R. J. Brown C. B. Bryan N. K. Butler R. J. Cash W. L. Cowley D. K. DeFord M. P. Delozier M. L. Dexter M. L. Dexter M. L. Douglas K. A. Elsethagen A. C. Etheridge S. D. Estey K. D. Fowler G. R. Franz G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann B. K. Hampton B. M. Hanlon G. N. Hanson W. M. Hoor W. M. Hookins S. 5-03 W. D. G. P. Hopkins S. 5-03 M. D. Guthrie J. C. Guyette D. B. Hagmann R. 2-98 B. K. Hampton S. 5-03 W. M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S. 5-03 P. 400 P. Hopkins S. 5-03 P. 400 P. Hopkins S. 5-03 P. 400 P. Hopkins P. 5-13 P. 400 | 55-13
53-21
12-11
14-07
14-07
14-07
13-01
12-11
157-14
13-49
13-2-58
13-1-15
13-1-16
13-1-17
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11
13-11 | | H. L. Boston V. C. Boyles R. J. Brown C. B. Bryan N. K. Butler R. J. Cash W. L. Cowley D. K. DeFord M. P. Delozier M. L. Dexter G. Douglas K. A. Elsethagen A. C. Etheridge S. D. Estey K. D. Fowler G. R. Franz G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann R. 2-98 M. Hanlon G. P. Hopkins G. P.
Hopkins S-03 R2-11 R2-11 R2-11 R3-12 R3-12 R3-13 R3-14 R3-15 R3-16 | 33-21
14-07
14-07
14-07
13-01
12-11
13-14
11-49
13-2-58
13-5-07
13-5-07
13-6-11
13-40
13-40
13-40
14-15
13-40
14-15
13-40
14-15
13-40
14-08
13-40
14-08
13-40
14-08
13-40
14-08
13-40
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
13-50
1 | | V. C. Boyles R. J. Brown C. B. Bryan N. K. Butler R. J. Cash W. L. Cowley D. K. DeFord M. P. Delozier M. L. Dexter M. L. Douglas R. A. Dodd J. G. Douglas R. A. Elsethagen A. C. Etheridge S. D. Estey R. D. Fowler G. R. Franz G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann B. K. Hampton B. M. Hanlon G. N. Hanson W. M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S7-40 R2-13 R2-14 R2-15 R2-16 R2-17 R2-17 R2-18 R2-17 R2-18 R2-19 R2 | 22-11
[4-07]
[4-07]
[3-01]
[2-11]
[37-14]
[31-49]
[32-47]
[32-54]
[35-07]
[35-07]
[35-07]
[36-71]
[37-40]
[37-40]
[37-40]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31-43]
[31- | | R. J. Brown C. B. Bryan N. K. Butler R. J. Cash W. L. Cowley D. K. DeFord M. P. Delozier M. L. Dexter M. L. Dexter R. J. G. Douglas R. A. Dodd J. G. Douglas R. A. Elsethagen A. C. Etheridge S. D. Estey R. D. Fowler G. R. Franz G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann R. 2-98 B. M. Hanlon G. N. Hanson W. M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S7-40 R. P. 13 R. 2-13 R. 2-26 R. R. 1-3 R. 2-3 R. 3-3 3 | [4-07] [4-07] [3-01] [2-11] [3-14] [3-14] [3-14] [3-2-58] [3-51] [3-50] [3-51] [3-67] [3-11] [3-40] [3-57] [3-40] [3-57] [3-40] [3-57] [3-40] [4-15] [3-40] [4-15] [3-40] [4-15] [3-40] [4-15] [3-40] [4-15] [3-40] [4-15] [3-40] [3-25] [3-40] [3-25] [3-40] [3-25] | | C. B. Bryan N. K. Butler R. G. Carothers R. J. Cash W. L. Cowley D. K. DeFord M. P. Delozier M. L. Dexter G. R. A. Dodd J. G. Douglas K. A. Elsethagen A. C. Etheridge S. D. Estey K. D. Fowler G. R. Franz G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann B. K. Hampton B. M. Hanlon G. N. Hanson W. M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S7-14 R. P. 2-11 R. P. 2-12 R. P. 12 R. P. 13 R. P. 14 R. P. 15 16 R. P. 16 R. P. 17 | [4-07] R3-01 R3-01 R3-01 R3-01 R1-49 R2-47 R2-58 R1-51 R3-07 R3-03 R3-26 R3-03 R3-26 R3-01 R3-26 R3-01 R3-26 R3-01 R3-26 R3-01 R3-26 R3-01 R3-26 R3-01 R3-26 R3-26 R3-01 R3-26 | | N. K. Butler R. G. Carothers R. J. Cash W. L. Cowley D. K. DeFord M. P. Delozier R. J. Gand M. P. Delozier R. A. Dodd J. G. Douglas R. A. Elsethagen A. C. Etheridge S. D. Estey R. J. Franz G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann B. K. Hampton B. M. Hanlon G. N. Hanson W. M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S2-47 R1-49 R2-11 R2-11 R2-11 R2-11 R2-11 R3-01 R |
33-01
32-11
57-14
31-49
32-47
32-58
31-51
35-07
34-51
35-07
34-51
37-40
39-46
45-57
43-03
36-71
31-43
33-26
54-01
54-15
32-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-40
57-50
57-40
57-50
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57-60
57 | | K. G. Carothers R. J. Cash W. L. Cowley D. K. DeFord M. P. Delozier M. L. Dexter M. L. Dexter R. J. G. Douglas R. A. Dodd J. G. Douglas R. A. Elsethagen A. C. Etheridge S. D. Estey K. D. Fowler G. R. Franz G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann R. 2-98 B. M. Hanlon G. N. Hanson W.M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S-247 G. P. Hopkins R. D. Gustavson R. R. S. Se-03 R. Se-03 R. Se-03 R. Se-04 R. S. Gerber D. Gustavson R. S. Se-72 R. Se-72 R. Se-74 R. D. Gustavson R. Se-74 R. D. Gustavson R. Se-74 R. Se-74 R. D. Gustavson R. Se-74 R. D. Gustavson R. Se-74 R. Se-74 R. Higley R. Hopkins R. Hopkins | 22-11
37-14
37-14
31-49
32-47
32-58
31-51
35-07
34-51
35-03
47-07
32-11
37-40
39-46
45-57
43-03
36-71
31-43
33-26
34-01
34-15
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37 | | R. J. Cash W. L. Cowley D. K. DeFord M. P. Delozier R. J. Gash M. P. Delozier R. A. Dodd J. G. Douglas R. A. Elsethagen A. C. Etheridge S. D. Estey R. J. Franz G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann B. K. Hampton B. M. Hanlon G. N. Hanson W. M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S2-47 R. 25-48 R. 1-42 R. 1-43 R | 57-14
\$1-49
\$2-47
\$2-58
\$1-51
\$5-07
34-51
\$5-03
47-07
\$2-11
\$7-40
\$9-46
45-57
\$3-26
\$1-43
\$3-26
\$1-43
\$3-26
\$1-43
\$3-26
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1-40
\$1 | | W. L. Cowley R1-49 D. K. DeFord S2-47 M. P. Delozier R2-58 M. L. Dexter (6) R1-51 R. A. Dodd S5-07 J. G. Douglas B4-51 K. A. Elsethagen S5-03 A. C. Etheridge H7-07 S. D. Estey R2-11 K. D. Fowler R2-11 G. R. Franz S7-40 G. T. Frater K9-40 L. A. Gaddis H5-57 K. A. Gasper A3-03 J. E. Geary S6-71 T. C. Geer R1-43 M. S. Gerber B3-26 B. C. Gooding T4-01 D. R. Groth T4-15 R. D. Gustavson R2-54 M. D. Guthrie S6-72 J. C. Guyette S7-40 D. B. Hagmann R2-98 B. K. Hampton S7-40 B. M. Hanlon (10) T4-08 G. N. Hanson S5-07 W.M. Harty Jr. S5-13 B. A. Higley H5-49 J. L. Homan R3-25 G. P. Ho |
21-49
32-47
32-58
31-51
35-07
34-51
35-03
47-07
32-11
37-40
39-46
45-57
43-03
36-71
31-43
33-26
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-01
34-03
34-01
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34-03
34 | | D. K. DeFord M. P. Delozier M. P. Delozier R2-58 M. L. Dexter (6) R. A. Dodd J. G. Douglas K. A. Elsethagen S5-03 A. C. Etheridge S. D. Estey R2-11 K. D. Fowler R2-12 G. R. Franz G. T. Frater L. A. Gaddis H5-57 H. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann R2-98 B. K. Hampton B. K. Hampton B. K. Hanson W.M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S5-03 | 52-47
32-58
31-51
55-07
34-51
55-03
47-07
32-11
57-40
39-46
45-57
43-03
56-71
51-43
53-26
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
54-01
55-07
55-03
55-03
55-03
55-03
55-12 | | M. P. Delozier M. L. Dexter (6) R. A. Dodd J. G. Douglas K. A. Elsethagen A. C. Etheridge S. D. Estey K. D. Fowler G. R. Franz G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann B. K. Hampton B. M. Hanlon G. N. Hanson W.M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S5-03 R1-51 R1-52 R1-53 R2-54 R2-11 R3-12 R3-12 R3-12 R3-12 R3-13 R3-14 R3-15 R3-16 R3-17 R3-18 | 22-58 R1-51 S5-07 34-51 S5-07 R2-11 R2-11 S7-40 K9-46 H5-57 A3-03 S6-71 R1-43 B3-26 F4-01 F4-15 R2-54 S6-72 S7-40 R2-98 S7-40 R4-08 S5-07 S5-13 H5-49 R3-25 S5-03 R2-50 S5-12 | | M. L. Dexter (6) R1-51 R. A. Dodd S5-07 J. G. Douglas B4-51 K. A. Elsethagen S5-03 A. C. Etheridge H7-07 S. D. Estey R2-11 G. R. Franz S7-40 G. T. Frater K9-40 L. A. Gaddis H5-57 K. A. Gasper A3-07 J. E. Geary S6-71 T. C. Geer R1-42 M. S. Gerber B3-20 B. C. Gooding T4-01 D. R. Groth T4-15 R. D. Gustavson R2-54 M. D. Guthrie S6-72 J. C. Guyette S7-40 D. B. Hagmann R2-98 B. K. Hampton S7-40 B. M. Hanlon (10) T4-08 G. N. Hanson S5-07 W.M. Harty Jr. S5-13 G. P. Hopkins S5-03 | R1-51
S5-07
34-51
S5-03
H7-07
R2-11
R2-11
S7-40
K9-46
H5-57
A3-03
S6-71
R1-43
B3-26
F4-01
F4-15
R2-54
R4-01
F4-15
R2-54
R3-40
R4-08
S7-40
R4-08
S5-07
S5-13
H5-49
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3 | | R. A. Dodd J. G. Douglas B4-51 K. A. Elsethagen A. C. Etheridge H7-00 S. D. Estey R2-11 G. R. Franz G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann B. K. Hampton B. K. Hampton B. M. Hanlon G. N. Hanson W.M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S5-03 K. A. Clethagen S5-03 K. A. Dodd S5-03 K. A. Dodd S5-03 K. A. Dodd S5-03 K. Hopkins S5-03 K. A. Dodd S5-03 K. Hopkins S5-03 K. Hopkins S5-03 K. Hopkins S5-03 |
55-07
34-51
55-03
H7-07
12-11
13-11
13-40
14-5-57
14-03
13-26
14-01
14-15
12-54
14-01
14-15
12-98
13-40
14-08
14-08
15-07
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03 | | J. G. Douglas K. A. Elsethagen A. C. Etheridge S. D. Estey K. D. Fowler G. R. Franz G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann B. K. Hampton B. K. Hampton B. M. Hanlon G. N. Hanson W.M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S5-03 | 34-51
35-03
-47-07
32-11
37-40
39-46
-45-57
-43-03
36-71
31-43
33-26
34-01
34-15
32-54
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-50
37-40
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50 | | K. A. Elsethagen A. C. Etheridge H7-07 S. D. Estey R2-11 K. D. Fowler G. R. Franz G. T. Frater L. A. Gaddis H5-57 K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann B. K. Hampton B. K. Hampton B. M. Hanlon G. N. Hanson W.M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S5-03 | 55-03
17-07
12-11
12-11
157-40
159-46
15-57
13-03
156-71
11-43
13-26
14-01
14-15
12-54
15-72
157-40
12-98
157-40
14-08
15-07
15-07
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-03
15-0 | | A. C. Etheridge S. D. Estey R. D. Fowler G. R. Franz G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann B. K. Hampton B. K. Hampton B. M. Hanlon G. N. Hanson W.M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins R2-11 R2-11 R2-11 R2-11 R3-11 R3-11 R3-12 R3-11 R3-12 R3-11 R3-12 R3-13 R3-14 R3-15 R3-15 R3-16 R3-16 R3-16 R3-16 R3-17 R3-18 R |
47-07
32-11
37-40
39-46
45-57
43-03
36-71
31-43
33-26
54-01
54-15
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-40
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37-50
37 | | A. C. Etheridge S. D. Estey R. 2-11 K. D. Fowler R. 2-12 G. R. Franz G. T. Frater L. A. Gaddis H. 5-5 K. A. Gasper J. E. Geary T. C. Geer R. 1-42 M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann R. 2-98 B. K. Hampton B. K. Hampton B. M. Hanlon G. N. Hanson W.M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S7-03 | 22-11
32-11
57-40
59-46
45-57
A3-03
56-71
R1-43
33-26
F4-01
F4-15
82-54
56-72
57-40
F4-08
F3-40
F4-08
F3-40
F4-08
F3-40
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50
F3-50 | | S. D. Estey K. D. Fowler R.2-11 G. R. Franz G. T. Frater L. A. Gaddis H.5-57 K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann R.2-98 B. K. Hampton S.7-40 B. M. Hanlon G. N. Hanson W.M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S7-03 R. S7-40 R. G. S7-40 R. Hopkins R.3-25 R. Hagmann R.3-25 R. Hopkins R.3-26 | 22-11
57-40
59-46
45-57
A3-03
56-71
R1-43
33-26
F4-01
F4-15
R2-54
66-72
57-40
R2-98
57-40
R2-98
57-40
R3-25
55-07
S5-13
H5-49
R3-25
S5-03
R2-50
S5-12 | | K. D. Fowler R2-11 G. R. Franz S7-40 G. T. Frater K9-40 L. A. Gaddis H5-57 K. A. Gasper A3-03 J. E. Geary S6-71 T. C. Geer R1-43 M. S. Gerber B3-26 B. C. Gooding T4-01 D. R. Groth T4-15 R. D. Gustavson R2-54 M. D. Guthrie S6-72 J. C. Guyette S7-40 D. B. Hagmann R2-98 B. K. Hampton S7-40 B. M. Hanlon (10) G. N. Hanson S5-07 W.M. Harty Jr. S5-13 B. A. Higley H5-49 J. L. Homan R3-25 G. P. Hopkins S5-03 | 57-40
59-46
H5-57
A3-03
56-71
R1-43
B3-26
F4-01
F4-15
R2-54
S6-72
S7-40
R2-98
S7-40
R2-98
S7-40
R3-25
S5-03
R3-25
S5-03
R3-25
S5-03
R3-25
S5-12 | | G. R. Franz G. T. Frater L. A. Gaddis K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B. C. Gooding D. R. Groth R. D. Gustavson M. D. Guthrie J. C. Guyette D. B. Hagmann B. K. Hampton B. K. Hampton B. M. Hanlon G. N. Hanson W.M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S7-40 G. T. Frater K. 9-40 9 |
K9-46
H5-57
A3-03
S6-71
R1-43
B3-26
F4-01
F4-15
R2-54
S6-72
S7-40
R2-98
S7-40
F4-08
S5-07
S5-13
H5-49
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3 | | G. T. Frater L. A. Gaddis H5-57 K. A. Gasper J. E. Geary T. C. Geer M. S. Gerber B3-26 B. C. Gooding T4-01 D. R. Groth T4-15 R. D. Gustavson R2-54 M. D. Guthrie J. C. Guyette D. B. Hagmann R2-98 B. K. Hampton S7-40 B. M. Hanlon G. N. Hanson W.M. Harty Jr. S5-13 B. A. Higley J. L. Homan G. P. Hopkins S5-03 | H5-57 A3-03 S6-71 R1-43 B3-26 F4-01 F4-15 R2-54 S6-72 S7-40 R2-98 S7-40 F4-08 F5-07 S5-13 H5-49 R3-25 S5-03 R2-50 S5-12 | | L. A. Gaddis H5-57 K. A. Gasper A3-07 J. E. Geary T. C. Geer R1-43 M. S. Gerber B3-26 B. C. Gooding T4-01 D. R. Groth R. D. Gustavson R2-54 M. D. Guthrie J. C. Guyette D. B. Hagmann R2-98 B. K. Hampton S7-40 B. M. Hanlon G. N. Hanson S5-07 W.M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S6-73 S6-74 S6-75 S7-46 | H5-57 A3-03 S6-71 R1-43 B3-26 F4-01 F4-15 R2-54 S6-72 S7-40 R2-98 S7-40 F4-08 F5-07 S5-13 H5-49 R3-25 S5-03 R2-50 S5-12 | | K. A. Gasper J. E. Geary S6-71 T. C. Geer R1-41 M. S. Gerber B3-26 B. C. Gooding T4-01 D. R. Groth R. D. Gustavson R2-54 M. D. Guthrie J. C. Guyette D. B. Hagmann R2-98 B. K. Hampton S7-40 B. M. Hanlon G. N. Hanson S5-07 W.M. Harty Jr. B. A. Higley J. L. Homan G. P. Hopkins S6-72 R1-41 R1-42 R2-54 R2-54 R3-67 R3-67 R3-67 R3-68 R | A3-03
S6-71
R1-43
B3-26
F4-01
F4-15
R2-54
S6-72
S7-40
F4-08
F5-07
S5-13
H5-49
R3-25
S5-03
R2-50
S5-12 | | J. E. Geary S6-71 T. C. Geer R1-42 M. S. Gerber B3-26 B. C. Gooding T4-01 D. R. Groth T4-15 R. D. Gustavson R2-54 M. D. Guthrie S6-72 J. C. Guyette S7-40 D. B. Hagmann R2-98 B. K. Hampton S7-40 B. M. Hanlon (10) T4-08 G. N. Hanson S5-07 W.M. Harty Jr. S5-13 B. A. Higley H5-49 J. L. Homan R3-25 G. P. Hopkins S5-03 | 56-71
\$1-43
33-26
\$14-01
\$4-15
\$2-54
\$6-72
\$7-40
\$2-98
\$7-40
\$4-08
\$5-07
\$5-13
\$45-49
\$3-25
\$5-03
\$2-50
\$55-12 | | T. C. Geer R1-42 M. S. Gerber B3-26 B. C. Gooding T4-01 D. R. Groth T4-15 R. D. Gustavson R2-54 M. D. Guthrie S6-72 J. C. Guyette S7-40 D. B. Hagmann R2-98 B. K. Hampton S7-40 B. M. Hanlon (10) G. N. Hanson S5-07 W.M. Harty Jr. S5-13 B. A. Higley H5-49 J. L. Homan R3-25 G. P. Hopkins S5-03 | R1-43
33-26
F4-01
F4-15
R2-54
86-72
87-40
R2-98
87-40
F4-08
85-07
85-13
H5-49
R3-25
85-03
R2-50
R3-12 | | M. S. Gerber B3-26 B. C. Gooding T4-01 D. R. Groth T4-15 R. D. Gustavson R2-54 M. D. Guthrie S6-72 J. C. Guyette S7-40 D. B. Hagmann R2-98 B. K. Hampton S7-40 B. M. Hanlon (10) G. N. Hanson S5-07 W.M. Harty Jr. S5-13 B. A. Higley H5-49 J. L. Homan R3-25 G. P. Hopkins S5-03 | 33-26
F4-01
F4-15
R2-54
S6-72
S7-40
R2-98
S7-40
F4-08
S5-07
S5-13
H5-49
R3-25
S5-03
R2-50
S5-12 | | B. C. Gooding T4-01 D. R. Groth T4-15 R. D. Gustavson R2-54 M. D. Guthrie S6-72 J. C. Guyette S7-40 D. B. Hagmann R2-98 B. K. Hampton S7-40 B. M. Hanlon (10) T4-08 G. N. Hanson S5-07 W.M. Harty Jr. S5-13 B. A. Higley H5-49 J. L. Homan R3-25 G. P. Hopkins S5-03 | T4-01
F4-15
R2-54
86-72
87-40
R2-98
87-40
F4-08
85-07
85-13
H5-49
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3 | | D. R. Groth R. D. Gustavson R. D. Guthrie J. C. Guyette S7-40 D. B. Hagmann R. C. D. B. Hampton S7-40 B. M. Hanlon G. N. Hanson W.M. Harty Jr. S5-13 B. A. Higley J. L. Homan G. P. Hopkins S5-03 |
F4-15
R2-54
86-72
87-40
R2-98
87-40
F4-08
85-07
S5-13
H5-49
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25
R3-25 | | R. D. Gustavson R2-54 M. D. Guthrie S6-72 J. C. Guyette S7-40 D. B. Hagmann R2-98 B. K. Hampton S7-40 B. M. Hanlon (10) T4-08 G. N. Hanson S5-07 W.M. Harty Jr. S5-13 B. A. Higley H5-49 J. L. Homan R3-25 G. P. Hopkins S5-03 | 22-54
56-72
57-40
32-98
57-40
64-08
55-07
55-13
45-49
33-25
55-03
32-50
55-12 | | M. D. Guthrie \$6-72 J. C. Guyette \$7-40 D. B. Hagmann \$2-98 B. K. Hampton \$7-40 B. M. Hanlon \$10 G. N. Hanson \$5-07 W.M. Harty Jr. \$5-13 B. A. Higley \$10 J. L. Homan \$10 G. P. Hopkins \$5-03 | 86-72
87-40
82-98
87-40
F4-08
85-07
85-13
H5-49
83-25
85-03
82-50
85-12 | | J. C. Guyette S7-40 D. B. Hagmann R2-98 B. K. Hampton S7-40 B. M. Hanlon (10) T4-08 G. N. Hanson S5-07 W.M. Harty Jr. S5-13 B. A. Higley H5-49 J. L. Homan R3-23 G. P. Hopkins S5-03 | 67-40
12-98
67-40
14-08
65-07
65-13
15-49
13-25
65-03
12-50
65-12 | | D. B. Hagmann R2-98 B. K. Hampton S7-40 B. M. Hanlon (10) T4-08 G. N. Hanson S5-07 W.M. Harty Jr. S5-13 B. A. Higley H5-49 J. L. Homan R3-23 G. P. Hopkins S5-03 | R2-98
67-40
F4-08
65-07
65-13
H5-49
R3-25
R5-03
R2-50
R5-12 | | B. K. Hampton S7-40 B. M. Hanlon (10) T4-08 G. N. Hanson S5-07 W.M. Harty Jr. S5-13 B. A. Higley H5-49 J. L. Homan R3-25 G. P. Hopkins S5-03 | 67-40
F4-08
65-07
65-13
H5-49
C3-25
65-03
R2-50
S5-12 | | B. M. Hanlon (10) T4-08 G. N. Hanson S5-07 W.M. Harty Jr. S5-13 B. A. Higley H5-49 J. L. Homan R3-25 G. P. Hopkins S5-03 | T4-08
55-07
55-13
H5-49
R3-25
55-03
R2-50
S5-12 | | G. N. Hanson S5-07 W.M. Harty Jr. S5-13 B. A. Higley H5-49 J. L. Homan R3-25 G. P. Hopkins S5-03 | \$5-07
\$5-13
H5-49
\$3-25
\$5-03
\$2-50
\$5-12 | | W.M. Harty Jr. S5-13 B. A. Higley H5-49 J. L. Homan R3-25 G. P. Hopkins S5-03 | S5-13
H5-49
R3-25
S5-03
R2-50
S5-12 | | B. A. Higley H5-49 J. L. Homan R3-29 G. P. Hopkins S5-03 | H5-49
R3-25
S5-03
R2-50
S5-12 | | J. L. Homan R3-25 G. P. Hopkins S5-03 | R3-25
S5-03
R2-50
S5-12 | | G. P. Hopkins S5-03 | S5-03
R2-50
S5-12 | | | R2-50
S5-12 | | W. G. Hopkinson R2-50 | 55-12 | | | | | | | | | S5-12 | | | 33-12
32-84 | | | | | | | | | 57-14 | | J. Kalia R1-43 | | | | H5-27 | | P. F. Kison T4-07 | L4-U/ | | | | | | 32-11 | | | R2-11
R2-88 | | J. G. Kristofzski R2-12 | R2-11
R2-88
R2-12 | | J. G. Kristofzski R2-12
M. J. Kupfer H5-49 | R2-11
R2-88 | | M. D. LeClair | R3-75 | |----------------------------|--------| | J. A. Lechelt | R2-11 | | G. T. MacLean | H5-27 | | M. A. McLaughlin | H8-67 | | W. H. Meader | H8-66 | | P. J. Morgan (2) | S7-40 | | M. A. Payne | R2-58 | | L. T. Pedersen, Jr. | NI-46 | | R. E. Pohto | R2-87 | | R. S. Popielarczyk | S7-01 | | R. L. Powers | S5-13 | | T. B. Powers | R3-15 | | | R2-50 | | C. J. Rice | R2-38 | | R. E. Raymond (2) | S7-40 | | D. S. Rewinkel | | | W. E. Ross | \$7-84 | | K. Sathyanarayana | H0-34 | | D. J. Saueressig | S8-05 | | J. S. Schofield | S7-12 | | R. D. Schreiber | R2-12 | | E. B. Schwenk, Jr. | B4-51 | | N. J. Scott-Proctor | S5-01 | | J. E. Shapley | B4-46 | | J. P. Shearer | H0-20 | | D. H. Shuford | S7-03 | | E. R. Siciliano | B4-43 | | J. N. Strode | R2-11 | | R. R. Thompson | R2-12 | | A. M. Umek | S7-40 | | J. E. Van Beek | S2-48 | | J. A. Voogd | H6-37 | | A.B. Webb | R1-44 | | K. A. White | S5-13 | | A. E. Young (6) | R1-10 | | F. A. Zak | R3-01 | | Central Files | B1-07 | | 200 West Shift Office | T4-00 | | 200 East Shift Office | S5-04 | | Environmental | | | Data Mgmt Center (2) | H6-08 | | Unified Dose Assessment | | | Center (UDAC) | A0-20 | | Document Processing Center | A3-94 | | | |